
ABSTRACT

The MP Algorithm and Its Applications

Christopher Bailey, Ph.D.

Department of Mathematical Sciences

Northern Illinois University, 2013

Dr. Yoopyo Hong, Director

The minimal polynomial of a matrix contains some very basic information on the

matrix (e.g., spectral structure). Consequently, the minimal polynomial of a given

matrix provides useful and important knowledge in analysing matrices that arise in

applications. In practice, however, it is important to know not only the minimal

polynomial itself but also the mechanism of obtaining the minimal polynomial. We

present an algorithmic method for computing the minimal polynomial of any square

matrix. Since the method uses basic operations, it is algebraically and theoretically

simple to apply. The method allows us to compute the exact minimal polynomial of

any reasonably small size matrix. In general, it is not possible in any conventional

method for obtaining the minimal polynomial. In certain cases, the simplicity of

the method enables to show some desirable properties of the matrix.

NORTHERN ILLINOIS UNIVERSITY
DE KALB, ILLINOIS

JUNE 2013

THE MP ALGORITHM AND ITS APPLICATIONS

BY

CHRISTOPHER BAILEY

c© 2013 Christopher Bailey

A DISSERTATION PAPER SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE

DOCTOR OF PHILOSOPHY

DEPARTMENT OF MATHEMATICAL SCIENCES

Doctoral Director:
Dr. Yoopyo Hong

ACKNOWLEDGMENTS

I would like to express my deep gratitude to Professor Hong, my advisor, for

his patient guidance, enthusiastic encouragement, and useful critiques of this thesis.

I would also like to thank my wife, Abigail, whose loving encouragement, careful

editing, and useful suggestions allowed me to complete this dissertation.

Thank you to my parents, George and Alice, for their support throughout this

endeavor. I also thank my external reviewer and everyone on my committee for

their willingness to give their time so generously.

DEDICATION

For my daughter, Amelia. One in seven billion.

TABLE OF CONTENTS

Page

Chapter

1. Introduction . 2

1.1 Overview of dissertation . 2

1.2 The minimal polynomial . 3

2. How to compute the minimal polynomial in a computationally
simple way . 7

2.1 The MP algorithm . 7

2.2 The modified minimal polynomial (MMP) algorithm 16

2.3 Some immediate applications of the MP algorithm 24

3. Applications and observations of the modified minimal poly-
nomial algorithm (MMP) . 31

3.1 Lower Hessenberg matrices . 31

3.2 Hermitian Matrices . 39

4. Further applications of the MP algorithm 49

4.1 Diagonalization . 49

4.2 Determining the diagonalization of a matrix 51

4.3 Pre-Hermitian Matrices . 54

5. Summary and topics of further study 72

REFERENCES . 74

1

The following definitions and notations will be used throughout this dissertation.

Mn(C) the set of all n× n matrices with complex entries

In identity matrix in Mn(C)

Un(C) the set of all n× n unitary matrices

Cn
{

(a1, . . . , an)T ∈M1×n(C)| ai ∈ C
}

Cn {(a1, . . . , an) ∈Mn×1| ai ∈ C}

Hn(C) the set of all n× n Hermitian matrices

Πn the set of all n× n permutation matrices

pA(t) the characteristic polynomial of a matrix A ∈Mn(C)

qA(t) the minimal polynomial of a matrix A ∈Mn(C)

tr(A) the trace of a matrix A ∈Mn(C)

det(A) the determinant of matrix A ∈Mn(C)

diag(λ1, . . . , λn) the diagonal matrix with diagonal entries λi, for i = 1, . . . , n

A⊗B The Kronecker product of matrices A ∈Mn(C) and B ∈Mn(C)

vec(A) The vec of the matrix A ∈Mn(C)

Dn(C) the set of all n× n diagonal matrices

RDn(C) the set of all n× n real diagonalizable matrices

σ(A) the set of all eigenvalues of a matrix A ∈Mn(C)

deg(p(t)) the degree of a polynomial p(t)

CHAPTER 1

Introduction

1.1 Overview of dissertation

This dissertation develops an algorithm to compute the minimal polynomial of

any square matrix with exact arithmetics and demonstrates how to apply the algo-

rithm to a matrix. Chapter 1 introduces the minimal polynomial with a discussion

on existing methods for computing it. Then, applications of the minimal polynomial

are provided. After a brief review of some existing methods for computing the min-

imal polynomial, Chapter 2 introduces and develops a new algorithm to compute

the minimal polynomial for any square matrix. The algorithm is then modified to

make it easier to implement. Chapter 2 concludes with examples that illustrate how

the algorithm works. Chapter 3 applies the new algorithm to matrices of special

structure. In particular, the algorithm is applied to the class of lower Hessenberg

matrices where the algorithm simplifies when it is applied. In addition to applying

the algorithm to matrices of special structure, some interesting consequences of the

algorithm are noted in Chapter 3. A further application of the new algorithm is

applied to a new class of real diagonalizable matrices that are defined in Chapter 4.

A systematic approach is taken for determining whether a matrix is or is not real

diagonalizable. Some observations of this new class of matrices are made, including

how the algorithm can be used to compute its minimal polynomial.

3

1.2 The minimal polynomial

For any polynomial p(t) = tk + ak−1t
k−1 + · · ·+ a1t+ a0 and any A ∈Mn(C) the

matrix polynomial p(A) = Ak + ak−1A
k−1 + · · · + a1A + a0I is well defined. When

p(A) = 0 ∈Mn(C), the polynomial p(t) is said to annihilate matrix A. The minimal

polynomial of matrix A ∈ Mn(C) is a monic polynomial of minimal degree that

annihilates the matrix A, and it is denoted by qA(t). Any matrix A ∈Mn(C) has an

annihilating polynomial of finite degree, which we show here. It can easily be seen

that the set of all n-by-n complex matrices forms a vector space over the field of

complex numbers under the usual operations on matrices. Let Eij ∈ Mn(C) be the

matrix that has a one in the (i, j)-th entry and zero in all other entries. First, it is

clear that the set {Eij} is linearly independent and any matrix A = [aij] ∈ Mn(C)

can be written uniquely as A =
∑n

i=1

∑n
j=1 aijEij. This shows that the set {Eij}

forms a basis for Mn(C). Consequently, the vector space Mn(C) has dimension

n2. Since the set D =
{
A0, A,A2, . . . , An

2
}

contains n2 + 1 elements, D must be

a linearly dependent set for any A ∈ Mn(C). Thus, there is a linear combination

α0I+α1A+· · ·+αn2An
2
, αi ∈ C, i = 1, . . . , n2 are not all zero such that

∑n2

i=0 αiA
i =

0. In other words, the polynomial p(t) =
∑n2

i=0 αit
i is an annihilating polynomial

of A. Therefore, an annihilating polynomial exists for any matrix A ∈ Mn(C).

This means that a minimal polynomial exists for any A ∈ Mn(C). Not only does

the minimal polynomial exit, but it is unique [12, p. 642]. The Cayley-Hamilton

theorem [5, Theorem 2, p. 83] asserts that the degree of the minimal polynomial

is at most n. In contrast to the simplicity of knowing that the minimal polynomial

exists, computing the minimal polynomial is an entirely different matter.

There are several reasons for wanting to know the minimal polynomial of a

given matrix A ∈ Mn(C). One important reason is that it contains information

4

about all of the distinct eigenvalues of the matrix A. This is significant because the

diagonalizablity of a matrix A is completely determined by the minimal polynomial,

since a matrix A ∈ Mn(C) is diagonalizable if and only if the minimal polynomial

factors into distinct linear factors.

Another good use of the minimal polynomial is that it provides a way to write

a matrix polynomial in the simplest possible form. To see how, suppose that qA(t)

is the minimal polynomial of a given matrix A ∈ Mn(C). For any polynomial

pm(t) with m ≥ deg(qA(t)), we may apply the Euclidean algorithm by dividing the

polynomial pm(t) by the minimal polynomial qA(t) to obtain pm(t) = h(t)qA(t) +

r(t), where h(t) and r(t) are the quotient and remainder, respectively, such that

deg(r(t)) < deg(qA(t)). This means that pm(A) = h(A) · qA(A) + r(A) = r(A)

since qA(A) = 0. In particular pm(A) = r(A), which reduces the original matrix

polynomial pm(t) of degree m to an equivalent matrix polynomial of degree one less

than the degree of the minimal polynomial. To see a specific case of this, consider

the polynomial p4(t) = t4 +3t3 + t2 +3, and suppose that the matrix A ∈Mn(C) has

minimal polynomial qA(t) = t2+1. When we divide p4(t) by the minimal polynomial

the result is p4(t) = t4 + 3t3 + t2 + 3 = (t2 + 3t)qA(t) + (−3t + 3), and therefore

p4(A) = A4 + 3A3 + A2 + 3I = −3A + 3I. This reduction process is an important

tool in the power series expansions of a function on matrices.

The minimal polynomial of a matrix also provides us with a tool to compute

the inverse of a given invertible matrix A ∈ Mn(C). Suppose that the minimal

polynomial qA(t) = tk + ak−1t
k−1 + · · · + a1t + a0 for an invertible matrix A ∈

Mn(C). Then Ak + ak−1A
k−1 + · · · + a1A + a0I = 0. We may rewrite the equation

as A(Ak−1 + ak−1A
k−2 + · · · + a1I) = −a0I, and because a0 = det(A) 6= 0, we have

A(−1
a0

(Ak−1 +ak−1A
k−2 + · · ·+a1I)) = I. Thus the inverse of the matrix A ∈Mn(C)

5

is given by A−1 = −1
a0

(Ak−1 +ak−1A
k−2 + · · ·+a1I) which is a polynomial expression

for the inverse matrix function of the lowest possible degree. Although the minimal

polynomial is important to know for a variety of reasons, it is usually difficult to

compute even for matrices of small dimension (e.g., see [2, p. 186-188]).

For some special classes of matrices in Mn(C), the minimal polynomial can be

obtained rather easily. One such class is that of idempotent matrices which are

a non-zero, non-identity matrix that has the property that A2 = A. Idempotent

matrices have the minimal polynomial of qA(t) = t(t− 1). More generally, any non-

zero, non-identity matrix such that An = A, where n is the minimal degree that

satisfies that property, has the minimal polynomial qA(t) = t(t− 1)(tn−2 + · · ·+ t2 +

t + 1). The main theme of this dissertation is to devise a more practical algorithm

that computes the minimal polynomial for any matrix in Mn(C).

There are a few known methods for computing the minimal polynomial of a

matrix A ∈ Mn(C). One method relies on knowing the characteristic polynomial

of a given matrix. Let λi ∈ C, i = 1, . . . , k be the distinct eigenvalues of a matrix

A ∈ Mn(C) such that the characteristic polynomial of matrix A is known and

has been factored as pA(t) = (t − λ1)
n1 . . . (t − λk)

nk , where n1 + · · · + nk = n,

k ≤ n. Then the minimal polynomial is determined by computing combinations of

(A−λ1I)q1 . . . (A−λkI)qk for each qi ≤ ni with i = 1, . . . , k until the first occurence

when qA(A) = (A − λ1I)q1 . . . (A − λkI)qk = 0. This method is not a very effective

way of obtaining the minimal polynomial. Note that this method requires knowledge

of all of the distinct eigenvalues of the matrix, and knowing the eigenvalues before

having the minimal polynomial is a very special case.

There are other methods of computing the minimal polynomial that do not rely

on knowing the characteristic polynomial of a given A ∈Mn(C). One such method

6

is outlined in [7, page 148]. This method transforms matrix A into a vector in Cn2

using the isomorphism defined by

T (A) = vec(A) ≡ (a11, . . . , an1, a12, . . . , an2, . . . , a1n, . . . , ann)T . Then the Gram-

Schmidt process is applied to the vectors {vec(I), vec(A), . . . , vec(Ai)}, where vec(Ai)

gives the first occurence of the linear dependency during the Gram Schmidt’s pro-

cess. It is at this point where the coefficients of the minimal polynomial can be ob-

tained since vec(Ai) can be written as a linear combination of the previous vectors.

The coefficients of the minimal polynomial are the Fourier coefficients for vec(Ai)

with respect to the orthonormal basis obtained from {vec(I), vec(A), . . . , vec(Ai−1)}

by the Gram-Shcmidt’s process. A benifit of this method is that it computes the

minimal polynomial of any matrix. We observe, however, that the method is not

practical to use for matrices of large size, but we will use the idea of isomorphically

transforming a matrix to a vector in Cn2
in our algorithm.

A paper by S. Bialas and M. Bialas [1] also uses the aforementioned isomorphic

transformation. In their method the authors map the matrix isomorphically to

vectors in Cn2
using the vec operation, but they do not use the Gram-Schmidt

process. Their method begins by computing powers of the matrix A to create

the set, {I, A,A2, . . . , An}. Then they convert the matrices to column vectors by

applying the vec operation. Using the set {vec(I), vec(A), . . . , vec(An)}, the method

constructs a huge n2 × (n+ 1) matrix and uses Gaussian elimination to obtain the

minimal polynomial. Clearly, the method is extremely inefficient since all the powers

of the matrix have to be computed before the Gaussian elimination process begins.

This method is especially impractical to use for computing the minimal polynomial

of a large sized matrix.

CHAPTER 2

How to compute the minimal polynomial in a

computationally simple way

This chapter develops an algorithm that computes the minimal polynomial of

any given matrix A ∈ Mn(C). From here on we will refer to this algorithm as the

MP algorithm. Before describing the MP algorithm, we introduce the concepts that

form the theoretical basis of our work, after which we introduce the MP algorithm.

Once the MP algorithm has been established, we present a modified version of the

MP algorithm that is easier to apply. We call the modified MP algorithm the MMP

algorithm. Throughout the chapter, examples are provided to illustrate how the

algorithms are implemented.

2.1 The MP algorithm

Our algorithm depends on the set D′ = {A0, A,A2, . . . , An} being linearly de-

pendent. We find a linearly dependent set with the least number of elements in it

by computing A,A2, . . . , Ak successively, for each k ≤ n. For this reason we make

the following definition.

Definition 2.1 Let S = {v0, v1, . . . , vn} ⊆ Cn2 be an ordered set. We say the

ordered set of vectors {v0, v1, . . . , vk} with k ≤ n is a minimal linearly dependent

set, if the set {v0, v1, . . . , vk} is linearly dependent such that {v0, v1, . . . , vj} is linearly

independent for all j < k.

8

Another way to say that the ordered set {v0, v1, . . . , vk} with k ≤ n is minimal

linearly dependent is that there exists scalars, α0, . . . , αk, which are not all zero such

that α0v0 + · · · + αkvk = 0 and if β0v0 + · · · + βjvj = 0, then β0 = · · · = βj = 0 for

0 ≤ j < k. The nontrivial zero linear combination α0v0 + · · · + αkvk = 0 is said to

be the minimal zero linear combination. Observe that αk 6= 0 in any minimal zero

linear combination α0v0 + · · ·+ αk−1vk−1 + αkvk = 0. Thus, we may assume αk = 1

for a minimal zero linear combination, and say it is monic.

Proposition 2.1 A monic minimal zero linear combination for a minimal linearly

dependent set is unique.

Proof. Let {v0, . . . , vk} be a minimal linearly dependent set. Suppose the monic

minimal zero linear combination is not unique. Then there exists scalars αi, i =

0, . . . , k − 1 , not all zero, and scalars βi, i = 0, . . . , k − 1, not all zero, such that

α0v0+· · ·+αk−1vk−1+vk = 0 and β0v0+· · ·+βk−1vk−1+vk = 0. Subtracting the two

minimal linear combinations, we obtain (α0−β0)v0+· · ·+(αk−1−βk−1)vk−1+0vk = 0.

If αi − βi 6= 0 for any i = 1, . . . , k − 1, then {v0, . . . , vk−1} is a linearly dependent

set which contradicts the set {v0, . . . , vk} being a minimal linearly dependent set.

Thus, αi = βi for i = 0, . . . , k−1, and we conclude that a monic minimal zero linear

combination of a minimal linearly dependent set is unique.

The following definition is an important operation on matrices used in the MP

algorithm.

Definition 2.2 Let A = [aij] ∈ Mn(C). Then a row vector, denoted by rvec(A),

is defined by rvec(A) = [a11, . . . , a1n : a21, . . . , a2n : . . . : an1, . . . , ann] ∈ Cn2 .

The rvec(A) operation on A ∈Mn(C) places the rows of matrix A consecutively

to create a row vector. It should be noted that rvec(A) is a simple modification

9

of the usual vec(A) = [a11, . . . , an1 : a12, . . . , an2 : . . . : a1n, . . . , ann]T ∈ Cn2
given

in matrix theory books. Note that rvec(A) = (vec(AT))T . We record this as a

proposition.

Proposition 2.2 Let A ∈Mn(C). Then rvec(A) = (vec(AT))T .

Proof. Let A =

 r1
...
rn

 ∈ Mn(C) where ri ∈ M1×n(C), i = 1, . . . , n, are

the rows of A. Then rvec(A) = [r1, . . . , rn] =

 rT1
...
rTn


T

= (vec(rT1 , . . . , r
T
n))T =

vec(AT)T .

To compute the minimal polynomial, it will be useful to view the problem in a

different way. Our method for computing the minimal polynomial is to search for

the minimal linearly dependent set in Cn2 instead of looking for the minimal linearly

dependent set in Mn(C). For this purpose, we define the map f : Mn(C)→ G = Cn2

by f(A) ≡ rvec(A), and show f to be an isomorphism in the next proposition. The

motivation behind transforming a matrix isomorphically to Cn2 is that it is easier to

find the minimal linearly dependent set in Cn2 . Once the minimal linearly dependent

set is obtained, we find the coefficients of the minimal polynomial for A ∈ Mn(C).

This idea appears in [7, p.148]. At this point we would like to mention that there

is no need to restrict ourselves to a specific isomorphism such as the one defined

as rvec. We may choose an isomorphism that is most conveinvient for the class of

matrices being considered. However, a natural choice for transforming A ∈ Mn(C)

is through the use of the isomorphism rvec.

The following proposition shows that f(A) = rvec(A) is in fact an isomorphism.

Proposition 2.3 The map f : Mn(C) → Cn2 be defined by f(A) = rvec(A) is an

isomorphism.

10

Proof. Let f : Mn(C) → Cn2 be defined by f(A) = rvec(A). Clearly, f(kA +

B) = rvec(kA+B) = k ·rvec(A)+rvec(B) = kf(A)+f(B). So f is linear. Let A = A1
...
An

 and B =

 B1
...
Bn

 ∈ Mn(C), where Ai, Bi, i = 1, . . . , n are the rows of the

matrices A and B, respectively. Then f(A) = f(B) implies that rvec(A) = rvec(B),

or
[
A1, . . . , An

]
=
[
B1, . . . , Bn

]
. Thus, Ai = Bi for each i = 1, . . . , n.

Hence A = B, and f is one-to-one. For any
[
C1, . . . , Cn

]
∈ Cn2 where Ci ∈ Cn,

let A =

 C1
...
Cn

. Then f(A) = rvec(A) = [C1, . . . , Cn]. Thus f is onto. Together

these show that f is an isomorphism, and the proof is complete.

We now show that {rvec(I), rvec(A), . . . , rvec(An)} is a linearly dependent set.

Proposition 2.4 Let A ∈Mn(C) and f(A) = rvec(A). Then the set

S = {v0 = f(I), v1 = f(A), v2 = f(A2), . . . , vn = f(An)}

is linearly dependent.

Proof. Suppose S = {rvec(I), . . . , rvec(An)}. The Cayley-Hamilton theorem

asserts there is a linear combination of the matrices {I, . . . , An} such that An +

αn−1A
n−1+· · ·+α1A+α0I = 0. Then, since f is an isomorphism, we have 0 = f(0) =

f(An+αn−1A
n−1+· · ·+α1A+α0I) = f(An)+αn−1f(An−1)+· · ·+α1f(A)+α0f(I) =

vn + αn−1vn−1 + · · ·+ α1v1 + α0v0. Thus the set S is a linearly dependent set.

The previous two propositions show that the coefficients of the minimal poly-

nomial can be obtained from the minimal linear combination of the row vectors

rvec(I), rvec(A), . . . , rvec(Ak) for k ≤ n. We now proceed to find this minimal

linear combination for A ∈Mn(C).

11

In Cn2 we use Gaussian elimination as an easy way to determine whether vectors

are linearly dependent in order to find the minimal linearly dependent set. We begin

by placing rvec(In) into a matrix with rvec(A), and use Gaussian elimination to see

if they are linearly dependent. If they are linearly dependent, then we have found

the minimal linearly dependent set. If they are not linearly dependent, then we place

rvec(In) and rvec(A) into a matrix with rvec(A2). We use Gaussian elimination to

check their linear dependence. When we successively place vectors into a matrix

to determine if they are linearly dependent, we will only use the last row of the

matrix in the Gaussian elimination. We continue this process on rvec(In), rvec(A),

. . . , rvec(Ak) where k ≤ n until the first instance when the vectors are linearly

dependent. Once they have been shown to be linearly dependent, we have found

the minimal linearly dependent set.

Let vi = rvec(Ai) for i = 0, . . . , n. By Proposition (2.4) we know that {v0, . . . , vn}

contains the minimal linearly dependent set. One advantage of our method over ex-

isting methods is that it is not necessary to calculate all the vi’s in order to obtain

the minimal polynomial.

We define the following augmented matrix which plays a significant role in the

MP algorithm.

Definition 2.3 Let {v0, . . . , vk} ⊆ Cn2 and Bk+1 ∈ Mk+1(C) be given. We define

G{v0,...,vk}(Bk+1) ∈Mk+1,n2+k+1(C) to be the matrix,

G{v0,...,vk}(Bk+1) ≡


v0 ‖
v1 ‖
: ‖ Bk+1

vk ‖

 .
The matrix G{v0,...,vk}(Bk+1) will be called the Gaussian updating (GU) matrix.

Before stating the MP algorithm, we first discribe the role played by the Gaus-

sian updating matrix. We begin with the Gaussian updating matrix G{v0}(B1) =

12

[v0‖1] = [eT1 eT2 · · · eTn ‖ 1] where B1 = I1. Next, we create the GU matrix

G{v0,v1}(B2) where B2 =

[
B1 0
0 1

]
∈ M2(C). Gaussian row operations are per-

formed to determine whether or not v0 and v1 are linearly dependent. Out of this

we have a new GU matrix, G{v0,v′1}(B
′
2), where v′1 is the vector obtained from v1

in the Gaussian elimination, and B′2 is the matrix obtained from B2 by the Gaus-

sian elimination. Successively, we construct the GU matrix G{v0,v′1,...,,v′k−1,vk}(Bk+1),

where Bk+1 =

[
B′k 0
0 eTk

]
. Gaussian elimination is used to determine whether or

not the newly introduced vector, vk, is linearly dependent to the vectors in the set{
v0, v

′
1, . . . , v

′
k−1
}
. From this we obtain a new GU matrix, G{v0,v′1,...,,v′k−1,v

′
k}(B

′
k+1),

where v′k is the vector obtained from vk in the Gaussian elimination, and B′k+1 is the

matrix obtained from Bk+1 in the Gaussian elimination. We know that this process

must produce a zero vector, v′k, for some k ≤ n by Proposition (2.4), and finding

this zero vector completes the updating process.

We now describe how to construct the matrix Bk+1 used in the GU matrix. Let

B1 = I1. Create B2 =

[
B1 0
0 eT1

]
and construct the GU matrix G{v0,v1}(B2). We use

Gaussian elimination to obtain the GU matrixG{v0,v′1}(B
′
2) and pay special attention

to the columns of B′2. Since the matrix B′2 is obtained from B2 through Gaussian

elimination we see that the first column of B′2 is the coefficient of In in the linear

combination of v′1 and the second column of B′2 is the coefficient of A in the linear

combination of v′1. We can generalize this and consider when G{v0,v′1,...,v′k}(B
′
k+1)

is obtained from G{v0,v′1...,v′k−1,vk}(Bk+1) using Gaussian elimination. Then the first

column of B′k+1 is the coefficient of In in the linear combination of v′k; the second

column of the matrix B′k+1 is the coefficient of A in the linear combination of v′k; the

third column of the matrix B′k+1 is the coefficient of A2 in the linear combination

of v′k; and, in general the k-th column of the matrix B′k+1 is the coefficient of Ak in

13

the linear combination of v′k. The vector v′k is the rvec of the linear combination of

the matrices In, A,A
2, . . . , Ak, the coefficients of the minimal polynomial are given

in the last row of B′k+1.

As stated earlier, it is not necessary to compute all the powers of A in order

to compute each vi. Since the set D′ = {A0, A,A2, . . . , An} contains a linearly

dependent set of vectors with k ≤ n, we only need to compute the first k powers of

the matrix A. We now give our algorithm to compute the minimal polynomial of

any given matrix A ∈Mn(C).

The Minimal Polynomial Algorithm (MP)

For a given A ∈Mn(C), let vi = rvec(Ai), and do the following.

Step 1. (Initialization). Create G{v0}(I1), set v0 ≡ v′0, i = 1, and B1 ≡ I1.

Step 2. Compute vi and construct G{v′0,...,v′i−1,vi}(Bi+1) where

Bi+1 ≡
[
B′i 0
0 eTi

]
. Use Gaussian elimination to obtain

G{v′0,...,v′i−1,v
′
i}(B

′
i+1).

• If v′i ≡ 0 stop and proceed to Step 3.

• If v′i 6= 0, increment i by 1 and repeat Step 2.

Step 3. For i = k such that v′k ≡ 0, the entries of the last row of B′k+1,
bk+1,j ∈ C with j = 1, . . . , k + 1, are the coefficients of the minimal
polynomial of the matrix A ∈Mn(C).

Here is an example that illustrates our algorithm.

Example 2.1 In this example we compute the minimal polynomial for the matrix

14

A =

 1 1 0
−1 2 1
2 0 1

 ∈M3(C).

Starting with the vector v0 = v′0 = rvec(I3) =
[

1 0 0 : 0 1 0 : 0 0 1
]
,

we construct the initial GU matrix

G{v′0}(B1) =
[

1 0 0 : 0 1 0 : 0 0 1 ‖ 1
]
.

Next we compute

v1 = rvec(A) =
[

1 1 0 : −1 2 1 : 2 0 1
]
.

Now we can construct the GU matrix

G{v′0,v1}(B2) =

[
1 0 0 : 0 1 0 : 0 0 1 ‖ 1 0
1 1 0 : −1 2 1 : 2 0 1 ‖ 0 1

]
.

Using Gaussian row elimination, we check whether v′0 and v1 are linearly depen-

dent. Applying the elementary operation R2 − R1 → R2, the resulting GU matrix

is

G{v′0,v′1}(B
′
2) =

[
1 0 0 : 0 1 0 : 0 0 1 ‖ 1 0
0 1 0 : −1 1 1 : 2 0 0 ‖ −1 1

]
.

Since v′1 6= 0, we know v′0 and v′1 are linearly independent and the algorithm continues

by computing

v2 = rvec(A2) =
[

0 3 1 : −1 3 3 : 4 2 1
]

15

and creating the GU matrix

G{v′0,v′1,v2}(B3) =

 1 0 0 : 0 1 0 : 0 0 1 ‖ 1 0 0
0 1 0 : −1 1 1 : 2 0 0 ‖ −1 1 0
0 3 1 : −1 3 3 : 4 2 1 ‖ 0 0 1

 .

We check to see whether v′0, v
′
1 and v2 are linearly dependent using the elementary

row operations R3 − 3R2 → R3. This gives us the GU matrix

G{v′0,v′1,v′2}(B
′
3) =

 1 0 0 : 0 1 0 : 0 0 1 ‖ 1 0 0
0 1 0 : −1 1 1 : 2 0 0 ‖ −1 1 0
0 0 1 : 2 0 0 : −2 2 1 ‖ 3 −3 1

 .

Again, since v′2 6= 0, we know that v′0, v
′
1, and v2 are not linearly dependent. There-

fore we continue the algorithm by computing

v3 = rvec(A3) =
[
−1 6 4 : 2 5 6 : 4 8 3

]
and constructing the GU matrix

G{v′0,v′1,v′2,v3}(B4) =


1 0 0 : 0 1 0 : 0 0 1 ‖ 1 0 0 0
0 1 0 : −1 1 1 : 2 0 0 ‖ −1 1 0 0
0 0 1 : 2 0 0 : −2 2 1 ‖ 3 −3 1 0
−1 6 4 : 2 5 6 : 4 8 3 ‖ 0 0 0 1

 .

Following the MP algorithm, we check whether the vectors v′0, v
′
1, v
′
2 and v3 are

linearly dependent using the elementary row operations R4 +R1 → R4, R4− 6R2 →

R4, and R4 − 4R3 → R4. This results in the GU matrix

G{v′0,v′1,v′2,v′3}(B
′
4) =


1 0 0 : 0 1 0 : 0 0 1 ‖ 1 0 0 0
0 1 0 : −1 1 1 : 2 0 0 ‖ −1 1 0 0
0 0 1 : 2 0 0 : −2 2 1 ‖ 3 −3 1 0
0 0 0 : 0 0 0 : 0 0 0 ‖ −5 6 −4 1

 .

16

Since v′3 ≡ 0, the algorithm terminates and the coefficients of the minimal polyno-

mial can be read off from the last row of the matrix

B′4 =


1 0 0 0
−1 1 0 0
3 −3 1 0
−5 6 −4 1

 .

The minimal polynomial for the matrix A is qA(t) = −5 + 6t− 4t2 + t3.

2.2 The modified minimal polynomial (MMP) algorithm

Example (2.1) from the previous section allows us to make a small observation

that will improve our algorithm. In the algorithm, vk should be obtained from v′k−1

instead of vk−1. This will reduce the number of computations since v′k−1 will have

more zeros than vk, which are produced during the Gaussian elimination. In order

to accomplish this, we introduce the Kronecker product.

Definition 2.4 [8, Definition 4.2.1] The Kronecker product of A = [aij] ∈

Mm,n(C) and B = [bij] ∈ Mp,q(C) is denoted by A ⊗ B and is defined to be a

matrix of the following form,

A⊗B ≡

 a1,1B · · · a1,nB
...

. . .
...

am,1B · · · am,nB

 ∈Mmp,nq(C).

Proposition 2.5 [8, Theorem 4.3.1] Let A,B and C ∈ Mn(C), then vec(ABC) =

(CT ⊗ A)vec(B).

17

Proposition 2.6 Let A and B be matrices so that the product BA is defined. Then

rvec(BA) = rvec(B)(I ⊗ A).

Proof. We know that rvec(A) and vec(A) are related by rvec(A) = (vec(AT))T

as seen in Proposition (2.2). We apply this fact and Proposition (2.5) to calcu-

late rvec(BA) = vec((BA)T)T = vec(ATBT)T = ((I ⊗ AT)vec(BT))T = ((I ⊗

A)Tvec(BT))T = vec(BT)T (I ⊗ A) = rvec(B)(I ⊗ A).

Proposition (2.6) gives us the tool we need to write the vk in terms of the row vec-

tor v′k−1. To see how, note that v′k−1 is the linear combination of {v0, . . . , vk−2, vk−1},

say v′k−1 =
∑k−1

i=0 bivi =
∑k−1

i=0 birvec(A
i) = rvec(

∑k−1
i=0 biA

i). Notice that the linear

combination
∑k−1

i=0 biA
i is just some matrix. So we apply Proposition (2.6) to obtain

the recurrence relation v′k−1(I⊗A) = rvec(
∑k−1

i=0 biA
i)(I⊗A) = rvec(

∑k−1
i=0 biA

iA) =

vk. We note that this new vk is different from the rvec of Ak in the MP algorithm.

Rather, this new vk is the rvec of the linear combination of
∑k−1

i=0 biA
iA.

Once we have computed vk for some k ≤ n by using Proposition (2.6), we need

the (k+ 1)-th row of the lower triangular matrix Bk+1 in the GU matrix. In light of

Proposition (2.6), we see that the relationship vk = v′k−1(I⊗A) effectively multiplies

the rvec of the linear combination of the k-th row in the GU matrix by A. Thus,

the (k + 1)-th row of the matrix Bk+1 may be obtained by shifting the entries to

the right 1 entry. To demonstrate this suppose that [b1 . . . bk 0] is the k-th row of

the matrix B′k then [0 b1 . . . bk] is the last row in the new matrix Bk+1. A visual

representation of this is helpful. Suppose we have computed the following GU matrix

G{v′0,...,v′k−1}(B
′
k) =


v′0 ‖
v′1 ‖ B′k−1
: ‖

v′k−1 ‖b1 . . . bk

 .

18

Then v′k−1 is the rvec of the linear combination of I, . . . , Ak−1. In other words

v′k−1 = b0I + · · ·+ bk−1A
k−1. The updated GU matrix after adding the vector vk is

G{v′0,...,v′k−1,vk}(Bk+1) =


v′0 ‖
v′1 ‖ B′k−1
: ‖

v′k−1 ‖b1 . . . bk 0
vk ‖0 b1 . . . bk

 .

Shifting each element of the k-th row of the matrix B′k to the right one entry

([0 b1 . . . bk]) gives us the (k+ 1)-th row of the new matrix Bk+1, which corresponds

with the coefficients of the linear combination vk+1 = rvec(b1A+ · · ·+ bkA
k+1). We

now give a modified version of the MP algorithm that will compute the minimal

polynomial of any matrix A ∈ Mn(C) and the modified algorithm is referred to as

the modified minimal polynomial algorithm (MMP).

19

The Modified Minimal Polynomial Algorithm (MMP)

For a given A ∈Mn(C), do the following.

Step 1. Create G{v0}(I1), set v0 = rvec(In) ≡ v′0, set i = 1, and B1 ≡ I1

Step 2. Compute vi = v′i−1(I ⊗ A) and construct the GU matrix

G{v′0,...,v′i−1,vi}(Bi+1) where Bi+1 ≡
[
B′i 0
0 b

]
, such that b ∈ Ci are the

entries of the last row of B′i. Use Gaussian elimination to obtain
G{v′0,...,v′i−1,v

′
i}(B

′
i+1).

• If v′i ≡ 0 stop and proceed to Step 3.

• If v′i 6= 0, increment i by 1 and repeat Step 2.

Step 3. For i = k such that v′k ≡ 0, the entries of the last row of B′k+1,
bk+1,j ∈ C for j = 1, . . . , k + 1, are the coefficients of the minimal
polynomial of the matrix A ∈Mn(C).

In the following example we compute the minimal polynomial of the same matrix

used in Example (2.1), but here we use the MMP algorithm to show how it is more

efficient than the MP algorithm. The efficiency comes from less computations each

time Gaussian ellimination. The savings will be significant if the modified algorithm

is applied to a certain sparse matrix.

Example 2.2 In this example we illustrate our modified algorithm for calculating

the minimal polynomial of the matrix

A =

 1 1 0
−1 2 1
2 0 1

 ∈M3(C).

Starting with the vector v0 = v′0 = rvec(I3) =
[

1 0 0 : 0 1 0 : 0 0 1
]
,

we construct the initial GU matrix

20

G{v′0}(B1) =
[

1 0 0 : 0 1 0 : 0 0 1 ‖ 1
]
.

Next we compute

v1 = v′0(I ⊗ A)

=
[

1 0 0 : 0 1 0 : 0 0 1
]  A 0 0

0 A 0
0 0 A


=

[
1 1 0 : −1 2 1 : 2 0 1

]
.

Now we can construct the GU matrix

G{v′0,v1}(B2) =

[
1 0 0 : 0 1 0 : 0 0 1 ‖ 1 0
1 1 0 : −1 2 1 : 2 0 1 ‖ 0 1

]
.

Using Gaussian row elimination, we check whether v′0 and v1 are linearly depen-

dent. Applying the elementary operation R2 − R1 → R2, the resulting GU matrix

is

G{v′0,v′1}(B
′
2) =

[
1 0 0 : 0 1 0 : 0 0 1 ‖ 1 0
0 1 0 : −1 1 1 : 2 0 0 ‖ −1 1

]
.

Since v′1 6= 0, we know v′0 and v1 are linearly independent and the algorithm continues

by computing

v2 = v′1(I ⊗ A)

=
[

0 1 0 : −1 1 1 : 2 0 0
]  A 0 0

0 A 0
0 0 A


=

[
−1 2 1 : 0 1 2 : 2 2 0

]

21

and creating the GU matrix

G{v′0,v′1,v2}(B3) =

 1 0 0 : 0 1 0 : 0 0 1 ‖ 1 0 0
0 1 0 : −1 1 1 : 2 0 0 ‖ −1 1 0
−1 2 1 : 0 1 2 : 2 2 0 ‖ 0 −1 1

 .

Using the elementary row operations R3 +R1 → R3 and R3 − 2R2 → R3 we obtain

the GU matrix

G{v′0,v′1,v′2}(B
′
3) =

 1 0 0 : 0 1 0 : 0 0 1 ‖ 1 0 0
0 1 0 : −1 1 1 : 2 0 0 ‖ −1 1 0
0 0 1 : 2 0 0 : −2 2 1 ‖ 3 −3 1

 .

Again, since v′2 6= 0, we proceed to the next step by computing

v3 = v′2(I ⊗ A)

=
[

0 0 1 : 2 0 0 : −2 2 1
]  A 0 0

0 A 0
0 0 A


=

[
2 0 1 : 2 2 0 : −2 2 3

]
.

and creating the GU matrix

G{v′0,v′1,v′2,v3}(B4) =


1 0 0 : 0 1 0 : 0 0 1 ‖ 1 0 0 0
0 1 0 : −1 1 1 : 2 0 0 ‖ −1 1 0 0
0 0 1 : 2 0 0 : −2 2 1 ‖ 3 −3 1 0
2 0 1 : 2 2 0 : −2 2 3 ‖ 0 3 −3 1

 .

Using the elementary row operations R4 − 2R1 → R4 and R4 − R3 → R4, the

resulting GU matrix is

G{v′0,v′1,v′2,v′3}(B
′
4) =


1 0 0 : 0 1 0 : 0 0 1 ‖ 1 0 0 0
0 1 0 : −1 1 1 : 2 0 0 ‖ −1 1 0 0
0 0 1 : 2 0 0 : −2 2 1 ‖ 3 −3 1 0
0 0 0 : 0 0 0 : 0 0 0 ‖ −5 6 −4 1

 .

22

Since v′3 ≡ 0, the algorithm terminates and the coefficients of the minimal polyno-

mial can be read off from the last row of the matrix

B′4 =


1 0 0 0
−1 1 0 0
3 −3 1 0
−5 6 −4 1

 .
The minimal polynomial for the matrix A is qA(t) = −5 + 6t− 4t2 + t3.

The next example is included to show the computational savings of the MMP

algorithm when compared to the algorithm given in [1] that requires computing

A,A2, . . . , An for A ∈Mn(C).

Example 2.3 We use the MMP algorithm to calculate the minimal polynomial for

the matrix

A =


3 −1 −1 0
1 1 −1 0
1 −1 1 0
1 −1 0 1

 ∈M4(C).

We start with v′0 =
[

1 0 0 0 : 0 1 0 0 : 0 0 1 0 : 0 0 0 1
]

and

create the GU matrix

G{v′0}(B1) =
[

1 0 0 0 : 1 0 0 0 : 0 0 1 0 : 0 0 0 1 ‖ 1
]
.

Next we compute

v1 = v′0(I ⊗ A)

=
[
eT1 eT2 eT3 eT4

] 
A 0 0 0
0 A 0 0
0 0 A 0
0 0 0 A


=

[
3 −1 −1 0 : 1 1 −1 0 : 1 −1 1 0 : 1 −1 0 1

]
.

23

Now we can construct the GU matrix

G{v′0,v1}(B2) =

[
1 0 0 0 : 0 1 0 0 : 0 0 1 0 : 0 0 0 1 ‖ 1 0
3 −1 −1 0 : 1 1 −1 0 : 1 −1 1 0 : 1 −1 0 1 ‖ 0 1

]
.

Using the elementary row operation R2 − 3R1 → R2 we obtain the GU matrix

G{v′0,v′1}(B
′
2) =[

1 0 0 0 : 0 1 0 0 : 0 0 1 0 : 0 0 0 1 ‖ 1 0
0 −1 −1 0 : 1 −2 −1 0 : 1 −1 −2 0 : 1 −1 0 −2 ‖ −3 1

]
.

Since v′1 6= 0, we continue the algorithm by computing

v2 = v′1(I ⊗ A)

= [0 −1 −1 0 : 1 −2 −1 0 : 1 −1 −2 0 : 1 −1 0 −2]


A 0 0 0
0 A 0 0
0 0 A 0
0 0 0 A


=

[
−2eT1 −2eT2 −2eT3 −2eT4

]
.

and constructing the GU matrix

G{v′0,v′1,v2}(B3) =

[
1 0 0 0 : 0 1 0 0 : 0 0 1 0 : 0 0 0 1 ‖ 1 0 0
0 −1 −1 0 : 1 −2 −1 0 : 1 −1 −2 0 : 1 −1 0 −2 ‖ −3 1 0
−2 0 0 0 : 0 −2 0 0 : 0 0 −2 0 : 0 0 0 −2 ‖ 0 −3 1

]
.

Using the elementary row operation R3 + 2R1 → R3 we obtain the GU matrix

G{v′0,v′1,v′2}(B
′
3) =

[
1 0 0 0 : 0 1 0 0 : 0 0 1 0 : 0 0 0 1 ‖ 1 0 0
0 −1 −1 0 : 1 −2 −1 0 : 1 −1 −2 0 : 1 −1 0 −2 ‖ −3 1 0
0 0 0 0 : 0 0 0 0 : 0 0 0 0 : 0 0 0 0 ‖ 2 −3 1

]

24

Since v′2 ≡ 0, the algorithm terminates, and the coefficients of the minimal poly-

nomial can be read off from the last row of the matrix B′3. The minimal polynomial

of the matrix A is qA(t) = 2− 3t+ t2.

It is significant to note that in order to find the minimal polynomial the MP

algorithm only needed to compute the rvec of A and A2 as opposed to the rvec of

A,A2, A3 and A4 which are necessary in the algorithm given in [1].

2.3 Some immediate applications of the MP algorithm

The following result is an immediate consequence of the MMP algorithm which

is completely nontrivial to verify without the MMP algorithm.

Proposition 2.7 A real matrix A ∈ Mn(R) has a minimal polynomial with real

coeficents.

One application of the minimal polynomial is to obtain the inverse of a given

matrix A ∈ Mn(C) in the form of a matrix polynomial. Let A ∈ Mn(C) be a

given matrix. Then our algorithm computes the minimal polynomial, qA(t) = tk +

ak−1t
k−1 + · · ·+ a1t+ a0, a0 6= 0, of the matrix A ∈Mn(C). Thus, the inverse of the

matrix A ∈Mn(C) is given by A−1 = −1
a0

(Ak−1 + ak−1A
k−2 + · · ·+ a1I) as described

in the introduction of this dissertation.

Example 2.4 We show how we may use the GU matrix to obtain the inverse

of an invertible matrix. In Example (2.1), we obtained the minimal polynomial,

qA(t) = −5 + 6t− 4t2 + t3, for the invertible matrix

A =

 1 1 0
−1 2 1
2 0 1

 ∈M3(C).

When the MP algorithm terminated in example (2.1), we had the GU matrix

25

G{v′0,v′1,v′2,v′3}(B
′
4) =


1 0 0 : 0 1 0 : 0 0 1 ‖ 1 0 0 0
0 1 0 : −1 1 1 : 2 0 0 ‖ −1 1 0 0
0 0 1 : 2 0 0 : −2 2 1 ‖ 3 −3 1 0
0 0 0 : 0 0 0 : 0 0 0 ‖ −5 6 −4 1

 .

This means we can write the inverse using A−1 =
−1

a0
(a3A

2 + a2A + a1I) =

1

5
(A2 − 4A + 6I) =

6

5
I − 4

5
A +

1

5
A2. Instead of computing

1

5
(A2 − 4A + 6I) =

6

5
I − 4

5
+

1

5
A2, we use elementary row operations in order to have the coefficients

6
5
, −4

5
, and 1

5
appear in the third row of the GU matrix G{v′0,v′1,v′2,v′3}(B

′
4). First, use

the elementary operation
1

5
R3 → R3 to obtain the GU matrix

G{v′0,v′1,v′2,v′3}(B
′
4) =


1 0 0 : 0 1 0 : 0 0 1 ‖ 1 0 0 0
0 1 0 : −1 1 1 : 2 0 0 ‖ −1 1 0 0
0 0 1

5
: 2

5
0 0 : −2

5
2
5

1
5
‖ 3

5
−3
5

1
5

0
0 0 0 : 0 0 0 : 0 0 0 ‖ −5 6 −4 1

 .

Next, we use the elementary operation R3 −
1

5
R2 → R3, which results in the GU

matrix

G{v′0,v′1,v′2,v′3}(B
′
4) =


1 0 0 : 0 1 0 : 0 0 1 ‖ 1 0 0 0
0 1 0 : −1 1 1 : 2 0 0 ‖ −1 1 0 0
0 −1

5
1
5

: 3
5

−1
5

−1
5

: −4
5

2
5

1
5
‖ 4

5
−4
5

1
5

0
0 0 0 : 0 0 0 : 0 0 0 ‖ −5 6 −4 1

 .

Lastly, we use the elementary operation R3 +
2

5
R1 → R3, to obtain the GU matrix

G{v′0,v′1,v′2,v′3}(B
′
4) =


1 0 0 : 0 1 0 : 0 0 1 ‖ 1 0 0 0
0 1 0 : −1 1 1 : 2 0 0 ‖ −1 1 0 0
2
5
−1
5

1
5

: 3
5

1
5
−1
5

: −4
5

2
5

3
5
‖ 6

5
−4
5

1
5

0
0 0 0 : 0 0 0 : 0 0 0 ‖ −5 6 −4 1

 .

Notice that we can finally see the linear combination
6

5
I− 4

5
A+

1

5
A2, and the inverse

of matrix A is the matrix constructed by reversing the rvec(·) operation to get

26

A−1 =
1

5

 2 −1 1
3 1 −1
−4 2 3

 ∈M3(C).

In addition to finding the inverse of a matrix, the minimal polynomial also pro-

vides us with a way to write a matrix polynomial in its simplest possible form.

The next example shows how we can use the MMP algorithm to obtain the matrix

polynomial.

Example 2.5 Let

A =


3 −1 −1 0
1 1 −1 0
1 −1 1 0
1 −1 0 1

 ∈M4(C)

and p(t) = t5 + 4t3 + 11t + 27 be a given polynomial. We will find the matrix for

the matrix polynomial p(A) = A5 + 4A3 + 11A + 27I. We computed the minimal

polynomial of A to be qA(t) = 2−3t+t2 using the MMP algorithm in Example (2.3).

A calculation applying the Euclidean algorithm shows that t5 + 4t3 + 11t + 27 =

(t3 + 3t2 + 11t + 27)qA(t) + (62t − 53). Thus, p(A) = 62A − 53I. In the last stage

of Example (2.3), we obtained the GU matrix

G{v′0,v′1,v′2}(B
′
3) =

[
1 0 0 0 : 0 1 0 0 : 0 0 1 0 : 0 0 0 1 ‖ 1 0 0
0 −1 −1 0 : 1 −2 −1 0 : 1 −1 −2 0 : 1 −1 0 −2 ‖ −3 1 0
0 0 0 0 : 0 0 0 0 : 0 0 0 0 : 0 0 0 0 ‖ 2 −3 1

]

Using the elementary operation 62R2 → R2, the resulting GU matrix is

G{v′0,v′1,v′2}(B
′
3) =

[
1 0 0 0 : 0 1 0 0 : 0 0 1 0 : 0 0 0 1 ‖ 1 0 0
0 −62 −62 0 : 62 −124 −62 0 : 62 −62 −124 0 : 62 −62 0 −124 ‖ −186 62 0
0 0 0 0 : 0 0 0 0 : 0 0 0 0 : 0 0 0 0 ‖ 2 −3 1

]
.

27

Next, use R2 + 133R1 → R2 to have the GU matrix

G{v′0,v′1,v′2}(B
′
3) =

[
1 0 0 0 : 0 1 0 0 : 0 0 1 0 : 0 0 0 1 ‖ 1 0 0

133 −62 −62 0 : 62 9 −62 0 : 62 −62 9 0 : 62 −62 0 9 ‖ −53 62 0
0 0 0 0 : 0 0 0 0 : 0 0 0 0 : 0 0 0 0 ‖ 2 −3 1

]
.

This shows us that the linear combination −53I + 62A is

p(A) =


133 −62 −62 0
62 9 −62 0
62 −62 9 0
62 −62 0 9



It is a well-known fact that an idempotent matrix, which is characterized by the

property A2 = A, has the minimal polynomial qA(t) = t(t − 1). We use our MP

algorithm to provide a new proof of this fact.

Proposition 2.8 Let A ∈Mn(C) be an idempotent matrix different from the iden-

tity or zero matrix. Then A has minimal polynomial qA(t) = t(t− 1).

Proof. Let A ∈ Mn(C) be an idempotent matrix other than the identity or

zero matrix. Starting with v′0 = [eT1 · · · eTn], we create the GU matrix G{v′0}(I1) =[
v′0 1

]
. Following the algorithm, we compute v1 = v′0(I ⊗ A) and create the GU

matrix

G{v′0,v1}(I2) =

[
v′0 1 0
v1 0 1

]
.

The resulting GU matrix from the row operation R2 −R1 → R2 is,

G{v′0,v′1}(B
′
2) =

[
v′0 1 0
v′1 −1 1

]
.

28

We note that v′1 is the rvec of the matrix polynomial −I + A. Since A is not

the identity v′1 6= 0, and the algorithm continues. Computing v2 = v′1(I ⊗ A) and

creating the GU matrix

G{v′0,v′1,v2}(I2) =

 v′0 1 0 0
v′1 −1 1 0
v2 0 −1 1

 ,
we see that v2 is the rvec of the matrix polynomial −A+A2. Since A is idempotent

we know that −A + A2 = 0. Thus v2 = 0, and the minimal polynomial of the

idempotent matrix A is qA(t) = t(t− 1).

A matrix is said to be nilpotent if Ak = 0 for some positive integer k. The

smallest power k is called the index of nilpotency. The minimal polynomial of a

nilpotent matrix is qA(t) = tk, where k is the index of nilpotency. Our algorithm

will determine the nilpotency of a given matrix in the process of finding its minimal

polynomial. Although finding the nilpotency of a matrix is a manageable task (one

can compute the powers of the matrix to obtain the index of nilpotency), when we

compute the minimal polynomial we get this information at a glance. It is usually

difficult to recognize if a matrix is nilpotent by simple observation. Even for matrices

of small size, nilpotency is not immediately detectible. For example, consider the

3× 3 matrix

A =

 5 −3 2
15 −9 6
10 −6 4

 ∈M3(R).

It is easy enough to compute and see that A2 = 0. It is nice to know that in the

process of calculating the minimal polynomial we obtain the same information.

Example 2.6

29

In this example we calculate the minimal polynomial for the matrix

A =

 5 −3 2
15 −9 6
10 −6 4

 ∈M3(R).

The matrix will be shown to be nilpotent in the process of computing its minimal

polynomial.

Starting with the vector v′0 = rvec(I3) =
[

1 0 0 : 0 1 0 : 0 0 1
]
, we

construct the GU matrix

G{v′0}(B1) =
[

1 0 0 : 0 1 0 : 0 0 1 ‖ 1
]
.

Next we compute

v1 = v′0(I ⊗ A)

=
[

1 0 0 : 0 1 0 : 0 0 1
]  A 0 0

0 A 0
0 0 A


=

[
5 −3 2 : 15 −9 6 : 10 −6 4

]
.

Now wev construct the GU matrix

G{v′0,v1}(B2) =

[
1 0 0 : 0 1 0 : 0 0 1 ‖ 1 0
5 −3 2 : 15 −9 6 : 10 −6 4 ‖ 0 1

]
.

Using the elementary row operation R2 − 5R1 → R2, we obtain the GU matrix

G{v′0,v′1}(B
′
2) =

[
1 0 0 : 0 1 0 : 0 0 1 ‖ 1 0
0 −3 2 : 15 −14 6 : 10 −6 −1 ‖ −5 1

]
.

30

Since v′1 6= 0, we compute

v2 = v′1(I ⊗ A)

=
[

0 −3 2 : 15 −14 6 : 10 −6 −1
]  A 0 0

0 A 0
0 0 A


=

[
−25 15 10 : −75 45 −30 : −50 30 −20

]
.

and construct the GU matrix G{v′0,v′1,v2}(B3) =

 1 0 0 : 0 1 0 : 0 0 1 ‖ 1 0 0
0 −3 2 : 15 −14 6 : 10 −6 −1 ‖ −5 1 0
−25 15 10 : −75 45 −30 : −50 30 −20 ‖ 0 −5 1

 .

Using the elementary row opertations R3 + 25R1 → R3 and R3 + 5R2 → R3, we

end up with the GU matrix G{v′0,v′1,v′2}(B
′
3) =

 1 0 0 : 0 1 0 : 0 0 1 ‖ 1 0 0
0 −3 2 : 15 −14 6 : 10 −6 −1 ‖ −5 1 0
0 0 0 : 0 0 0 : 0 0 0 ‖ 0 0 1

 .

Therefore, the minimal polynomial of the matrix A is qA(t) = t2, which shows that

the matrix A is nilpotent with nilpotency two.

CHAPTER 3

Applications and observations of the modified minimal

polynomial algorithm (MMP)

Now that we have shown that the MMP algorithm will find the minimal polyno-

mial of any given matrix A ∈Mn(C), this chapter studies how the MMP algorithm

can be effectively implemented to matrices of special structure. First, we show

that the MMP algorithm can be significantly simplified when it is applied to an

unreduced lower Hessenberg matrix. Then, we use the MMP algorithm to obtain a

recursive formula for the minimal polynomial for a tridiagonal matrix. We conclude

this chapter with further applications of our algorithm.

3.1 Lower Hessenberg matrices

There are classes of matrices that we examine in this chapter in order to see the

effect a matrices structure has on the computation of its minimal polynomial. One

such class is that of lower Hessenberg matrices, and so we include its definition.

Definition 3.1 A matrix A = [aij] ∈Mn(C) is said to be a lower-Hessenberg matrix

if aij = 0 for j > i+ 1.

Lower Hessenberg matrices have the form

32

A =


a11 a12 0 · · · 0

a21 a22
.

...

a31 a32
. 0

...
...

. an−1,n
an1 an2 · · · an,n−1 ann

 .

A lower-Hessenberg matrix is said to be unreduced if all the superdiagonal entries

are non-zero. In other words, ai,i+1 6= 0 for each i = 1, . . . , n − 1. If there are zero

entries on the superdiagonal, the lower-Hessenberg matrix is said to be reduced.

Proposition 3.1 Let A ∈ Mn(C) be an unreduced lower Hessenberg matrix. Then

the first row of each matrix in the set {I, A,A2, . . . , An−1} forms a basis for Cn.

Proof. Let

A =


a11 a12 0 · · · 0

a21 a22
.

...

a31 a32
. 0

...
...

. an−1,n
an1 an2 · · · an,n−1 ann

 ∈Mn(C)

be an unreduced lower-Hessenberg matrix. Then ai,i+1 6= 0 for i = 1, . . . , n− 1. We

observe that

A2 =



a
(2)
11 a

(2)
12 a

(2)
13 · · · 0

a
(2)
21 a

(2)
22

.
...

a
(2)
31 a

(2)
32

. a
(2)
n−2,n

...
...

. a
(2)
n−1,n

a
(2)
n1 a

(2)
n2 · · · a

(2)
n,n−1 a

(2)
nn


where a

(2)
i,i+2 6= 0 for i = 1, . . . , n− 2, and in general we see that

33

Ak =



a
(k)
11 a

(k)
12 a

(k)
13 · · · a

(k)
1,1+k 0 0

a
(k)
21 a

(k)
22

.
...

a
(k)
31 a

(k)
32

. a
(k)
n−k,n

...
...

...
.

...
...

...
...

...
. . .

... a
(k)
n−2,n

...
...

...
...

...
. . . a

(k)
n−1,n

a
(k)
n1 a

(k)
n2 · · · · · · · · · a

(k)
n,n−1 a

(k)
nn


,

where a
(k)
i,i+k 6= 0 for i = 1, . . . , n− k.

A consequence of this observation is that the set

{
(1, 0, . . . , 0), (a11, a12, 0, . . . , 0), . . . , (a

(n)
11 , a

(n)
12 , . . . , a

(n)
1n)
}

is linearly independent. This means that the first rows in the matrices I, A,A2, . . . ,

and An−1 form a linearly independent set. This set also spans Cn, which shows it is

a basis.

A simple consequence of Proposition (3.1) is the following theorem.

Theorem 3.1 Let A ∈Mn(C) be an unreduced lower-Hessenberg matrix. Then the

MP algorithm only requires the first rows of the matrices I, A,A2, . . . , An−1 to com-

pute the minimal polynomial of A ∈ Mn(C). In this case, the minimal polynomial

is equal to the characteristic polynomial of the matrix A.

Proof. Let A ∈Mn(C) be an unreduced lower Hessenberg matrix. Then the first

rows of {I, A,A2, . . . , An−1} forms a basis for Cn by Proposition (3.1). In this case,

the MP algorithm requires n+ 1 steps to complete by using only the first row of the

matrices to obtain the minimal polynomial of the A. Since the minimal polynomial

is degree n, the minimal polynomial must be the characteristic polynomial of A.

34

Theorem (3.1) shows that the MMP algorithm is significantly simplified when

it is applied to lower Hessenberg matrices since the algorithm needs to compute

only the first row of the matrices A,A2, . . . and An−1. This means that instead of

computing vk = v′k−1(I ⊗ A), where vi ∈ Cn2 , we only need to compute vk = v′k−1A

where vi ∈ Cn. This simplification reduces the amount of computation from the

order of n2 to the order of n. The algorithm below shows how the MMP algorithm

is applied to lower Hessenberg matrices.

The MMP Algorithm for Lower Hessenberg Matrices

For an unreduced lower Hessenberg matrix A ∈Mn(C), let vi be the first row of
the matrix A(i), A(0) = In, and do the following.

Step 1. Create G{v0}(I1), set v0 = eT1 ≡ v′0, where eT1 ∈ Cn, set i = 1, and B1 ≡ I1.

Step 2. Compute vi = v′i−1A and construct the GU matrix

G{v′0,...,v′i−1,vi}(Bi+1) where Bi+1 ≡
[
B′i 0
0 b

]
, such that b ∈ Ci are the

entries of the last row of B′i. Use Gaussian elimination to obtain
G{v′0,...,v′i−1,v

′
i}(B

′
i+1).

• If v′i ≡ 0 stop and proceed to Step 3.

• If v′i 6= 0, increment i by 1 and repeat Step 2.

Step 3. For i = k such that v′k ≡ 0, the entries of the last row of B′k+1,
bk+1,j ∈ C with j = 1, . . . , k + 1, are the coefficients of the minimal
polynomial of the matrix A ∈Mn(C).

We now give an example to illustrate how Theorem (3.1) can be applied.

35

Example 3.1 Consider

A =


1 1 0 0
2 1 1 0
1 2 3 1
1 1 1 1

 ∈M4(R).

We start the MMP algorthim for lower Hessenberg matrices with v′0 = [1 0 0 0], and

we construct the GU matrix

G{v′0}(I1) =
[

1 0 0 0 1
]
.

Next, we compute

v1 = v′0A =
[

1 1 0 0
]

and construct the GU matrix

G{v′0,v1}(I2) =

[
1 0 0 0 1 0
1 1 0 0 0 1

]
.

Now we check whether v′0 and v1 are linearly dependent using the elementary row

operation R2 −R1 → R1. The result is the GU matrix

G{v′0,v′1}(B
′
2) =

[
1 0 0 0 1 0
0 1 0 0 −1 1

]
.

Since v′1 6= 0, the vectors v′0 and v1 are not linearly dependent. The algorithm

continues by computing

v2 = v′1A =
[

2 1 1 0
]
,

and constructing the GU matrix

G{v′0,v′1,v2}(B3) =

 1 0 0 0 1 0 0
0 1 0 0 −1 1 0
2 1 1 0 0 −1 1

 .

36

Using the elementary row operations R3 − 2R1 → R3 and R3 − R1 → R3, the

resulting GU matrix is

G{v′0,v′1,v′2}(B
′
3) =

 1 0 0 0 1 0 0
0 1 0 0 −1 1 0
0 0 1 0 −1 −2 1

 .
We see that v′2 6= 0, and so the vectors v′0, v

′
1 and v2 are not linearly dependent. The

algorithm continues by computing

v3 = v′2A =
[

1 2 3 1
]

and constructing the GU matrix

G{v′0,v′1,v′2,v3}(B4) =


1 0 0 0 1 0 0 0
0 1 0 0 −1 1 0 0
0 0 1 0 −1 −2 1 0
1 2 3 1 0 −1 −2 1

 .
Applying Gaussian elimination using the elementary row operations R4 − R1 →

R4, R4 − 2R2 → R4, and R4 − 3R3 → R4, we obtain the GU matrix

G{v′0,v′1,v′2,v′3}(B
′
4) =


1 0 0 0 1 0 0 0
0 1 0 0 −1 1 0 0
0 0 1 0 −1 −2 1 0
0 0 0 1 4 3 −5 1

 .
The vectors v′0, v

′
1, v
′
2 and v3 are again not linearly dependent, and the algorithm

continues. We compute

v4 = v′3A =
[

1 1 1 1
]

and construct the GU matrix

G{v′0,v′1,v′2,v′3,v4}(B5) =


1 0 0 0 1 0 0 0 0
0 1 0 0 −1 1 0 0 0
0 0 1 0 −1 −2 1 0 0
0 0 0 1 4 3 −5 1 0
1 1 1 1 0 4 3 −5 1

 .

37

The row operations R5−R1 → R5, R5−R2 → R5, R5−R3 → R5 and R5−R4 → R5

are used and the resulting GU matrix is

G{v′0,v′1,v′2,v′3,v′4}(B
′
5) =


1 0 0 0 1 0 0 0 0
0 1 0 0 −1 1 0 0 0
0 0 1 0 −1 −2 1 0 0
0 0 0 1 4 3 −5 1 0
0 0 0 0 −3 2 7 −6 1

 .
Since v′4 = 0 the algorithm terminates, and the coefficients of the minimal polyno-

mial can be read off from the last row of the matrix B′5. The minimal polynomial

of the matrix A is qA(t) = −3 + 2t+ 7t2 − 6t3 + t4.

A simple consequence of Theorem (3.1) is that any monic polynomial, p(t), is

both the minimal polynomial and the characteristic polynomial of its companion

matrix. The companion matrix of a monic polynomial p(t) is defined as follows.

Definition 3.2 Let p(t) = tn+an−1t
n−1+· · ·+a1t+a0. A matrix A = [aij] ∈Mn(C)

is a companion matrix of the polynomial p(t) if it has the form

A =


0 1 0
... 0 1

0
. . . 1

−a0 −a1 · · · −an−1



The next theorem is an immediate consequence of Theorem (3.1).

Theorem 3.2 Every monic polynomial is both the minimal polynomial and the

characteristic polynomial of its companion matrix.

Theorem (3.1) required that the lower-Hessenberg matrix be in unreduced form;

it depended on the superdiagonal elements being non-zero. Sometimes, however,

there are zeros on the superdiagonal. In that case, the matrix is in unreduced form.

In this situation, the MMP algorithm for lower Hessenberg matrices will compute the

38

characteristic polynomial which may not coincide with the minimal polynomial. The

minimal polynomial can always be obtained by implementing the MMP algorithm

without reduction to a lower Hessenberg matrices. We have the following result.

Theorem 3.3 Let A ∈Mn(C) be a block lower triangular form,

A =


H1 0

H2

. . .

* Hk


where Hi ∈ Mni

(C) , i = 1, . . . , k, n1 + n2 + · · · + nk = n, are unreduced lower

Hessenberg matrices. For each i, let pi(t) be the minimal polynomial of the unreduced

lower Hessenberg matrix Hi ∈ Mni
, respectively. Then, pA(t) = p1(t) · · · pk(t) is the

characteristic polynomial of A.

Proof. Let A be a matrix of the form in the statement of the theorem. We

observe that the characteristic polynomial of A is pA(t) = det(A− tI)) = det(H1 −

tI) · · · det(Hk − tI) [14, p. 205]. Since each Hi is in unreduced lower Hessenberg

form, the MMP algorithm computes the minimal polynomial of each Hi which is

the characteristic polynomial of each Hi by Theorem (3.1). Thus, the product

det(H1 − tI) · · · det(Hk − tI), for i = 1, . . . , k is an n-th degree polynomial that

annihilates A, which is the characteristic polynomial of A.

Example 3.2 Let

39

A =



1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
5 3 0 1 1 0 0 0
1 2 1 2 1 1 0 0
2 0 1 1 3 3 0 0
2 3 5 4 7 9 1 1
2 3 1 5 8 10 1 1


=

 H1 0
H2

* H3

 ∈M8(R),

where diagonal blocks H1, H2 ∈ M3(R), and H3 ∈ M2(R) are lower Hessenberg

matrices. Implementing the algorithm we obtain qH1(t) = t(1 − 3t + t2), qH2(t) =

5 + 2t− 5t2 + t3, and qH3(t) = t(−2 + t). Thus the characteristic polynomial of A

is pA(t) = t2(t− 2)(t3 − 5t2 + 2t+ 5)(t2 − 3t+ 1).

Any matrix A ∈Mn(C) can be transformed into a lower Hessenberg matrix under

the similarity transformation. Theorems (3.1) and (3.3) now give us a way to obtain

the characteristic polynomial of any matrix A ∈ Mn(C) using the MMP algorithm

on lower Hessenberg matrices. Applying the MMP algorithm to the resulting lower

Hessenberg matrix, either in unreduced or reduced form, results in the minimal or

the characteristic polynomial, respectively.

3.2 Hermitian Matrices

In this section, we show how the MMP algorithm can be easily applied to obtain

the minimal polynomial of a Hermitian matrix.

Definition 3.3 A matrix A = [aij] ∈ Mn(C) is said to be Hermitian if A = A∗,

where A∗ ≡ A
T

= [aji].

Hermitian matrices are unitarily real diagonalizable. Since this is the case we

know that the minimal polynomial of a Hermitian matrix A ∈Mn(C) has the form

qA(t) = (t− λ1) · · · (t− λk), where the λi’s, i = 1, . . . , k are the distinct eigenvalues

40

of the matrix A. Since the roots of the minimal polynomial of any matrix contains

all the distinct eigenvalues of the matrix we have the following application of the

MP algorithm.

Application 3.1 The MP algorithm can be used to count the number of distinct

eigenvalues of a Hermitian matrix. More generally, the MP algorithm will count the

distinct eigenvalues of any diagonalizable matrix.

If A ∈ Mn(C) is diagonalizable, the rank(A) counts the number of non-zero

eigenvalues of the matrix. However, there is no easy way of counting the number of

distinct eigenvalues of a diagonalizable matrix. The significance of the Application

(3.1) is that it tells us the number of distinct eigenvalues of a real diagonalizable

matrix once the minimal polynomial is computed.

A real Hermitian matrix is known to be orthogonally similar to a tridiagonal

matrix via Givens planar rotations. We will describe a process of how to find a

tridiagonal matrix that is similar to a given Hermitian matrix. Then we will exploit

the structure of a tridiagonal matrix in order to find a recursive formula for the

minimal polynomial of a real Hermitian matrix.

41

Definition 3.4 (Givens Matrix) Let

U(θ, i, j) =



1 0 0
. . .

... 0
... 0

1 0 0
0 · · · 0 cos(θ) 0 · · · 0 sin(θ) 0 · · ·

0 1 0

0
...

. . .
... 0

0 0 1 0
0 · · · 0 − sin(θ) 0 · · · 0 cos(θ) 0 · · ·

0 0 1

0
... 0

...
. . .

0 0 1



.

This is the identity matrix with the (i, i) and (j, j) entries replaced by cos(θ) and

the (i, j) and (j, i) entries replaced by sin(θ) and − sin(θ), respectively.

It is clear that any Givens matrix is unitary. The Givens matrices can be used

to place zeros in any entry in a vector or a matrix. The following lemma is our first

step in using the Givens matrices to tridiagonalize a real Hermitian matrix.

Lemma 3.1 Suppose A =

[
a11 a12
a12 a22

]
∈ M2(R) is a given real Hermitian matrix.

Then, B =

[
c s
−s c

]
∈ M2(R) , where c =

√
1

2
−
√

1

4
− ω, s =

√
1

2
+

√
1

4
− ω,

and ω =
1

4 + (a22−a11
a12

)2
a Givens matrix such that BAB∗ =

[
λ1 0
0 λ2

]
, λi ∈ R, i =

1, 2.

Proof. Suppose A =

[
a11 a12
a12 a22

]
∈ M2(R) is a given real Hermitian matrix.

If a12 = 0 then the matrix is already in the desired form. For this reason we may

assume that a12 6= 0. The matrix B =

[
c s
−s c

]
is a Givens matrix because

c2 + s2 =

√1

2
−
√

1

4
− ω

2

+

√1

2
+

√
1

4
− ω

2

= 1, when ω =
1

4 + (a22−a11
a12

)2
.

42

Now, upon matrix multiplication, we have

BAB∗ =

[
λ1 (c2 − s2)a22 + cs(a12 − a11)

(c2 − s2)a22 + cs(a12 − a11) λ2

]
,

where λ1 = c2a11+s2a22+2sca12, λ2 = c2a22+s2a11−2sca12 ∈ R. Since s2+c2 = 1,

c =

√
1

2
−
√

1

4
− ω, s =

√
1

2
+

√
1

4
− ω, and ω =

1

4 + (a22−a11
a12

)2
.

Note that if a11 = a22 in the Lemma (3.1) then s = c =
1√
2

and the Givens

matrix becomes


1√
2

1√
2

− 1√
2

1√
2

. Since Givens matrices only effect the i-th and j-th

rows and columns during multiplication, Lemma (3.1) allows us to tridiagonalize a

real Hermitian matrix by successively introducing zeros in the off-diagaonal entries

of the Hermitian matrix. For example, consider the 4× 4 real Hermitian matrix

A =


a11 a12 a13 a14
a12 a22 a23 a24
a13 a23 a33 a34
a14 a24 a34 a44

 .

Using the Givens matrix U(θ, 1, 4) and choosing θ in accordance with the pre-

vious lemma , we may place a zero in the a14 element of matrix A by computing

U(θ, 1, 4)AU∗(θ, 1, 4). This results in the real Hermitian matrix

B =


b11 b12 b13 0
b12 b22 b23 b24
b13 b23 b33 b34
0 b24 b34 b44

 = U(θ, 1, 4)AU∗(θ, 1, 4).

43

Now we would like to place a zero in the b24 entry of this real Hermitian matrix

through the use of the Givens matrix U(θ, 2, 3) along with θ determined in Lemma

(3.1) by computing U(θ, 2, 3)BU∗(θ, 2, 3). This multiplication gives us real Hermi-

tian matrix

C =


c11 c12 c13 0
c12 c22 c23 0
c13 c23 c33 c34
0 0 c34 c44

 = U(θ, 2, 3)BU∗(θ, 2, 3).

Notice that the zero in the (1, 4) entry is not disturbed by the multiplication of this

Givens matrix . As a final step in the tridiagonal process, we will use the Givens

matrix U(θ, 1, 2) and θ deteremined from Lemma (3.1) to place a zero in the c13

entry of the matrix C. We multiply U(θ, 1, 2)CU∗(θ, 1, 2) to obtain a real Hermitian

matrix

D =


d11 d12 0 0
d12 d22 d23 0
0 d23 d33 d34
0 0 d34 d44

 = U(θ, 1, 2)CU∗(θ, 1, 2).

which is tridiagonal. We note again that the (1, 4) and (2, 4) entries of the ma-

trix, which the process had previously turned into zeros, were not disturbed by the

matrix multiplication. Thus, the Hermitian matrix A has been tridiagonalized by

successively applying sequences of Givens matrices.

This process can easily be generalized to tridiagonalize any real Hermitian ma-

trix. The following example is included to illustrate the process of triadiagonalizing

a real Hermitian matrix using Givens matrices.

44

Example 3.3 Consider

A =



15
7√
2

13
√

2 −5

7√
2

−58

5

31

5

17√
2

13
√

2
31

5

−92

5
3
√

2

−5
17√

2
3
√

2 15


∈M4(C).

Then A is a real Hermitian matrix. To place a zero in the (1, 4) entry we will use

the Givens matrix U(θ, 1, 4) where c = s = 1√
2

by Lemma (3.1). Thus, the Givens

matrix is

U(θ, 1, 4) =


1√
2

0 0
1√
2

0 1 0 0
0 0 1 0

− 1√
2

0 0
1√
2

 .

Multilying with this Givens matrix, we obtain the real Hermitian matrix

U∗(θ, 1, 4)AU(θ, 1, 4) =


20 −5 10 0
−5 −58

5
31
5

12
10 31

5
−92
5

16
0 12 16 10

 = B.

We now choose U(θ, 2, 3) to obtain a zero in the (2, 4) entry in the matrix B.

Using Lemma (3.1), we easliy compute c = 4
5

and s = 3
5

to obtain the Givens matrix

U(θ, 2, 3) =


1 0 0 0
0 4

5
3
5

0
0 −3

5
4
5

0
0 0 0 1

 .

45

U(θ, 2, 3) and U(θ, 2, 3)∗ are multiplied to B to result in the real Hermitian matrix

U∗(θ, 2, 3)BU(θ, 2, 3) =


20 −10 5 0
−10 −20 5 0

5 5 −10 20
0 0 20 10

 = C.

We finish the tridiagonalization of matrix A using U(θ, 1, 2) to force a zero in the

(1, 3) entry of matrix C. Using Lemma (3.1) we compute c = s =
1√
2

to obtain the

Givens matrix

U(θ, 1, 2) =


1√
2

1√
2

0 0

− 1√
2

1√
2

0 0

0 0 1 0
0 0 0 1

 .

Multiplying with this choice of Givens matrix results in the real Hermitian matrix

U∗(θ, 1, 2)CU(θ, 1, 2) =


10 20 0 0

20 −10 5
√

2 0

0 5
√

2 −10 20
0 0 20 10

 ,

which is unitarily similar to matrix A. The motivation for tridiagonalizing a Her-

mitian matrix is to apply the MMP algorithm for lower Hessenberg matrices to a

tridiagonal matrix. Since a tridiagonal matrix is a special type of lower Hessenberg

matrix, we recall that the MMP algorithm is significantly simplified by only using

the first row of the matrices I, A, . . . , and An−1. Moreover, in the case of a tridiag-

onal matrix, the MMP algorithm for lower Hessenberg matrices actually produces

a simple recurrence formula for the minimal polynomial.

46

We show how a recurrence relation is easily obtained from the MMP algorithm

in the case of a tridiagonal matrix. Let pi(t) be the polynomial obtained from i-th

row of the augmented matrix Bk+1 in the GU matrix G{v′0,v1,...,vk}(Bk+1). First we

observe that p0(t) = 1 and p1(t) = t− a1. Then, we notice that the last row of the

augmented matrix Bk+2 in the GU matrix G{v′0,v′1,...,v′k,vk+1,}(Bk+2) is obtained by

shifting the last row of Bk+1 in G{v′0,v′1,...,v′k−1,vk,}(Bk+1) by one column to the right

and that corresponds to multiplying the polynomial pk−1(t) by t in the GU matrix

G{v′0,v′1,...,v′k}(Bk+1). Then the simple structure of the tridiagonal matrix allows us to

obtain the last row of the augmented matrix B′k+2 by using the k-th and (k + 1)-th

rows of Bk+2. This observation gives the following remark.

Remark 3.1 Let

A =


a1 b1 0
c1

.

. bn−1

0 cn−1 an

 ∈Mn(C),

where bi 6= 0 for i = 1, . . . , n − 1. Then the minimal polynomial of the tridiagonal

matrix is obtained from the following recursive formula p0(t) = 1, p1(t) = t− a1 and

pk(t) = (t− ak)pk−1(t)− bk−1ck−1pk−2(t) for k = 2, . . . , n.

The recursive formula for a tridiagonal matrix can be reduced further for special

types of tridiagonal matrices. A very specific example of this is the tridiagonal

Toeplitz matrix which has the form

A =


a b 0
c

.

. b

0 c a

 ∈Mn(C).

47

In this case, the recursive formula may be reduced to p0(t) = 1, p1(t) = t − a and

pk(t) = (t− a)pk−1(t)− bcpk−2(t) for k = 2, . . . , n.

Example 3.4 In Example (3.3) we reduced the matrix

A =



15
7√
2

13
√

2 −5

7√
2

−58

5

31

5

17√
2

13
√

2
31

5

−92

5
3
√

2

−5
17√

2
3
√

2 15


∈M4(C)

to the unitarily similar tridiagonal matrix

D =


10 20 0 0

20 −10 5
√

2 0

0 5
√

2 −10 20
0 0 20 10

 ∈M4(C).

Instead of computing the minimal polynomial of matrix A using the MMP algorithm,

we will take advantage of the fact that the minimal polynomial of similar matrices

are equal. We compute the minimal polynomial of the tridiagonal matrix D using

the recursive formula in Remark (3.1). We start with p0(t) = 1 and p1(t) = t− 10.

Then use Remark (3.1)

p2(t) = (t− a2)p1(t)− b1c1p0(t)

= t2 − 500,

p3(t) = (t− a3)p2(t)− b2c2p1(t)

= t3 + 10t2 − 550t− 4500,

p4(t) = (t− a4)p3(t)− b3c3p2(t)

= t4 − 1050t2 + 1000t+ 245000

48

which is the minimal polynomial of matrix D, and hence of A. The minimal poly-

nomial of matrix A is qA(t) = t4 − 1050t2 + 1000t+ 245000.

The following theorem is a well-known result about the eigenvalues of tridiagonal

matrices [3, Lemma 0.1.1, p. 7]. We give a new proof of the theorem using the MP

algorithm in the next chapter.

Theorem 3.4 Let

A =


a1 b1 0
c1

.

. bn−1

0 cn−1 an

 ∈Mn(R)

be a tridiagonal matrix with bici > 0 for i = 1, . . . , n − 1. Then the eigenvalues of

the matrix A are real and distinct.

CHAPTER 4

Further applications of the MP algorithm

This chapter gives further applications of the MMP algorithm. First, we give

a systematic method to determine if a matrix is or not real diagonalizable. Diag-

onalizable matrices arise in many areas of matrix theory, and the assumption of

diagonalizability is a minimum requirement in most studies where square matrices

are employed. Therefore, it is important to know when a given matrix is (real)

diagonalizable. Also in this chapter, we define a new class of real diagonalizable

matrices, called the pre-Hermitian matrices. We provide basic properties of the pre-

Hermitian matrices and show how we may apply the MMP algorithm to compute

the minimal polynomial of a pre-Hermitian matrix.

4.1 Diagonalization

A matrix A ∈Mn(C) is said to be diagonalizable if there is a nonsingular matrix

R ∈ Mn(C) such that R−1AR = Λ, where Λ = diag(λ1, . . . , λn), λi ∈ σ(A). A

diagonalizable matrix is said to be real diagonalizable if all of its eigenvalues are

real. A matrix A ∈ Mn(C) is unitarily diagonalizable if there is a unitary matrix

U ∈ Un(C) such that U−1AU = Λ, where Λ = diag(λ1, . . . , λn), λi ∈ σ(A). The

following result about diagonalizable matrices is well known.

Theorem 4.1 [7, Theorem 1.3.7] A matrix A ∈ Mn(C) is diagonalizable if and

only if there exists a set of n linearly independent eigenvectors of A.

50

Theorem (4.1) seems to completely characterize the diagonaliability of a complex

matrix. Theoretically at least, all one has to do is to determine whether a given

matrix has n linearly independent eigenvectors. However, computing all possible

linearly independent eigenvectors for a given matrix is a complicated matter.

Another well known result views the diagonalization of a matrix in an entirely

different way. The result relies on the Cayley-Hamilton theorem in which the di-

agonalizability is determined by simple additions and multiplications of matrices.

Hence, the result is computationally simpler to apply.

Theorem 4.2 [7, Corollary 3.3.8] A matrix A ∈Mn(C) is diagonazable if and only

if the minimal polynomial of A splits into distinct linear factors. In other words,

qA(t) = (t− λ1) · · · (t− λk) where λ1, . . . , λk are the distinct eigenvalues of A.

This result along with the MMP algorithm can be applied to determine whether

a matrix A ∈Mn(C) is diagonalizable. Once the mimimal polynomial of A ∈Mn(C)

is obtained by use of the MMP algorithm, we determine if the minimal polynomial

splits into disctinct linear factors, qA(t) = (t−λ1) . . . (t−λk) where λ1, . . . , λk are the

distinct eigenvalues of the matrix A. In that case, the matrix A is diagonalizable and

furthermore, we also know that λ1, . . . , λk are all the possible distinct eigenvalues

of the matrix A. If λ1, . . . , λk are real, then A is real diagonalizable. In certain

cases, the result of Theorem (4.2) can be applied immediately. For example, the

class of idempotent matrices can easily be seen to be real diagonalizable. Since the

polynomial f(t) = t(t−1) is an annihilating polynomial for any idempotent matrix,

where A2 = A, by the observation above, f(t) must be the minimal polynomial for

any idempotent matrix. Moreover, an idempotent matrix A is real diagonalizable

with exactly two distinct real eigenvalues, zero and one.

51

The method described above seems to be an easy way of determining diagonal-

izability of a matrix. The determination is purely based on whether there exists an

annihilating polynomial that splits into distinct linear factors. In practice, one is

still faced with computational difficulties in determining the minimal polynomial of

a complex matrix unless it possesses some exploitable features, as in the case of an

idempotent matrix. The next section develops a method that resolves this problem.

4.2 Determining the diagonalization of a matrix

We now present a systematic approach to determine if a matrix A ∈ Mn(C) is

real diagonalizable. Applying the MMP algorithm to a complex matrix gives the

minimal polynomial of A. Once the minimal polynomial of the matrix A is obtained,

determining whether the matrix A is real diagonalizable is a simple matter.

First, notice that if the eigenvalues of a matrix are all real, then the coefficients

of the minimal polynomial must be all real. Secondly, if the minimal polynomial

qA(t) has degree k, then it must have k distinct real roots for the matrix A to be

real diagonalizable. To that end, we can use Sturm’s sequence [11, Theorem 2.5.4]

for finding the number of real roots of a real polynomial. In order to apply Sturm’s

theorem we will use Cauchy’s bound [7, Exercise 27, pp. 316] to find an interval in

which we will obtain number of the real distinct roots of the minimal polynomial.

We now formally state Cauchy’s bound and Sturm’s theorem.

Theorem 4.3 [7, Exercise 27, pp. 316] Let p(x) = xn + an−1x
n−1 + an−2x

n−2 +

· · ·+ a1x+ a0, a0 6= 0 be a polynomial and r be any root of p(x) = 0, then

|r| ≤ 1 +max {|a0|, |a1|, . . . , |an−1|} .

Let f0(x) be a polynomial. Denote the derivative of f0(x) by f1(x). Using the

52

Euclidean Algorithm calculate

f0(x) = q1(x)f1(x)− f2(x)

f1(x) = q2(x)f2(x)− f3(x)

...

fk−2(x) = qk−1(x)fk−1(x)− fk(x)

fk−1(x) = qk(x)fk(x)

where the degree of fi(x) is strictly lower than the degree of fi−1(x) for 1 ≤ i ≤ k.

The polynomial fk(x) divides fk−1(x), and fk(x) is the greatest common divisor of

the original function f0(x) and its derivative f1(x). The sequence f0(x), f1(x), . . . fk(x)

is called the Sturm sequence for the polynomial f0(x).

We now state Sturm’s theorem.

Theorem 4.4 [11, Theorem 2.5.4] The number of distinct real zeros of a polyno-

mial f(x) with real coefficients in [a, b] is equal to the difference of sign changes in

{f0(a), f1(a), . . . fk(a)} and {f0(b), f1(b), . . . fk(b)} .

Example 4.1 In this example we determine whether the matrix

A =


1 −1 1

2
1
2

1 −2 3
2

1
2

1 −2 1 1
18 −3 −4 −1


is or is not real diagonalizable by using the systematic approach we have developed.

First, using the MMP algorithm, we compute the minimal polynomial of the matrix

A which results in qA(t) = t4 + t3−3t2−4t−4. Since the coefficients of the minimal

polynomial are real, we continue the process to determine whether the matrix A

53

is or is not diagonalizable. In order to find a suitable interval to apply Sturm’s

theorem, we use Theorem (4.3) to calculate |r| ≤ 1 + max {1, 3, 4} = 5. Thus, a

suitable interval to apply Sturm’s theorem is [−5, 5]. Next we compute the Sturm

sequence for the minimal polynomial f0(t) = qA(t) = t4 + t3 − 3t2 − 4t − 4. The

Sturm sequence is f0(t) = t4 + t3 − 3t2 − 4t− 4, f1(t) = 4t3 + 3t2 − 6t− 4, f2(t) =

27
16
t2+ 21

8
t+ 15

4
, f3(t) = 800

81
t− 256

81
, f4(t) = −11907

2500
. Calculate f0(−5) = 441, f1(−5) =

−399, f2(−5) = 525
16
, f3(−5) = −4256

81
, f4(−5) = −11907

2500
. and f0(5) = 651, f1(5) =

541, f2(5) = 945
16
, f3(5) = 416

9
, f4(5) = −11907

2500
. To determine the number of real

roots we calculate the number of sign changes in the values of fi(−5), i = 0, . . . 4

and fi(5), i = 0, . . . 4 and take the difference. The number of real roots is 3− 1 = 2

in this case. We conclude that the matrix A is not real diagonalizable, since the

minimal polynomial has degree four and only two of the root are real.

If a matrix A is known to be real diagonalizable, then the degree of the minimal

polynomial is the number of distinct eigenvalues of A. It is a simple matter to

determine if a real diagonalizable matrix A has n distinct eigenvalues using our

method. To see how this can be done, let A ∈ Mn(C) be a diagonalizable matrix.

Using Gaussian elimination, we may take the diagonalizable matrix and transform

it to a lower Hessenberg form as seen in section (3.2) in Chapter 3. Once the lower

Hessenberg form is obtained, we can immediately identify whether the matrix has n

distinct eigenvalues. If the lower Hessenberg matrix is unreduced, then the minimal

polynomial is equal to the characteristic polynomial and the matrix must have n

distinct eigenvalues by Theorem (3.1). If the lower Hessenberg matrix is in reduced

form, then the minimal polynomial is not equal to the characteristic polynomial and

the matrix may have repeated eigenvalues.

Example 4.2 In this example we determine if the matrix

54

A =


2 1 −2 3
1 1 4 0
−2 4 0 1
3 0 1 1

 ∈M4(R)

has distinct eigenvalues. Since A is symmetric, it is real diagonalizable. Using the

matrices S1 =

[
1 0 0 0
0 1 2 −3
0 0 1 0
0 0 0 1

]
, S2 =

[1 0 0 0
0 1 0 0
0 0 −1

7
0

0 0 0 1

]
, S3 =

[
1 0 0 0
0 1 0 0
0 0 1 −22
0 0 0 1

]
, and S4 =

[1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −7

55

]
,

we reduce the matrix A to a lower Hessenberg by multiplying

(S1S2S3S4)
−1A(S1S2S3S4) =


2 1 0 0
14 −7 1 0
80 −28 34

7
1

−165
7

0 55
49

29
7

 ∈M4(R).

Since the lower Hessengerg matrix is unreduced, the matrix A has distinct eigenval-

ues by Theorem (3.1).

4.3 Pre-Hermitian Matrices

In the case of unitary similarity, the question of how to characterize unitary

diagonalizability is completely settled. The following results are well known.

Theorem 4.5 [7, Theorem 2.5.4] A matrix A ∈ Mn(C) is unitarily diagonalizable

if and only if A is normal.

Theorem 4.6 [7, Theorem 4.1.5] A matrix A ∈ Mn(C) is unitarily real diagonal-

izable if and only if A is Hermitian.

Different from diagonalization under similarity, diagonalization under unitary

similarity comes down to determining whether a matrix A is normal, that is, if

55

AA∗ = A∗A. It is even easier to determine whether a given matrix A is unitarily real

diagonalizable. A matrix is unitarily real diagonalizable if A∗ = A. The simplicity of

identifying the class of unitarily real diagonalizable matrices suggests a new problem.

Is there a class of matrices that can easily be identified as a real diagonalizable

matrix?

In this section we study a class of matrices which is easily recognized to be real

diagonalizable. We refer to them as the class of pre-Hermitian matrices. A pre-

Hermitian matrix is defined to be diagonally similar to a Hermitian matrix, and

therefore is real diagonalizable. We show that, like unitary similarity, there is a cri-

terion that is easy to recognize in determining whether a matrix is pre-Hermitian.

We also show that a Hermitian matrix is a type of pre-Hermitian matrix, and some

properties of Hermitian matrices are carried to those that are pre-Hermitian. These

include the interlacing property and eigenvalue majorization. We conclude this sec-

tion by showing how we may use our algorithm to compute the minimal polynomial

of a pre-Hermitian matrix. To that end, the following definition is needed.

Definition 4.1 [9, p. 2498] A matrix A ∈ Mn(C) is said to be strongly sign-

symmetric if aii ∈ R for i = 1, 2, . . . , n, aijaji ≥ 0 for all i, j = 1, 2, . . . , n, and

aijaji = 0 only if aij = aji = 0. The set of all strongly sign-symmetric will be

denoted by Ps(C).

In order to verify that a matrix is strongly sign-symmetric, we check that the

Hadamard product, A ◦ AT , is non-negative. This is easy to do since we need only

check that if aij = |aij|eiθij , then aji = |aji|e−iθij . It is easy to verify that all

Hermitian matrices are strongly sign-symmetric; i.e., Hn(C) ⊆ Ps(C).

Unfortunately, matrices in Ps(C) may not have all real eigenvalues. Conse-

quently, a matrix in Ps(C) may not be real diagonalizable. This is shown in the

56

following example.

Example 4.3 Consider the matrix A =

 0 1 10
1 0 1
.1 1 0

 ∈ M3(C) . Clearly, A is

strongly sign-symmetric. We will show that the characteristic polynomial of A has

only one real root. Since pA(λ) = det(A−λI) = −λ3+3λ+10.1, pA(λ) has a relative

minimum at (−1, 8.1), a relative maximum at (1, 12.1), is decreasing on (−∞,−1)

and (1,∞), and is increasing on (−1, 1). Since pA(λ) is a cubic polynomial with

negative leading coefficient, we see that pA(λ) has only one real root that is greater

than 1 and two complex roots occurring as conjugates. Thus, A ∈ Ps(C) while A

has complex eigenvalues.

The following result motivates the class of pre-Hermitian matrices.

Proposition 4.1 Let

A =



a1 b1 0
c1 a2 b2

c2
.
. bn−1

0 cn−1 an


be a tridiagonal matrix. If A ∈ Ps(C), then A is real diagonalizable. Moreover, if

bici > 0 for i = 1, . . . , n− 1, then the matrix A has distinct eigenvalues.

Proof. Suppose A ∈ Ps(C) is tridiagonal, and let X = diag(x1, . . . , xn) ∈

Mn(C) be an invertible diagonal matrix. We show that xi 6= 0 can be chosen

such that X−1AX is Hermitian which makes matrix A is real diagonalizable. Notice

57

that

X−1AX =



a1 b1
x2
x1

0
c1
x1
x2

a2 b2
x3
x2

c2
x2
x3

.

. bn−1
xn
xn−1

0 cn−1
xn−1
xn

an


.

If we can choose xi 6= 0 such that bi
xi+1

xi
= ci

xi
xi+1

, for i = 1, . . . , n, then the product

X−1AX is Hermitian.

Choose x1 = 1, and for i = 2, . . . , n choose

xi =



√
c1c2 . . . ci−1
b1b2 . . . bi−1

> 0 bi−1 6= 0

√
c1c2 . . . ci−2
b1b2 . . . bi−2

> 0 bi−1 = 0

.

With this choice of x′is in X, it is routine to verify that A is similar to a Hermitian

matrix. This shows that A is real diagonalizable. When bici > 0 for i = 1, . . . , n−1,

then the matrix A is an unreduced lower Hessenberg matrix. By Theorem (3.1),

the minimal polynomial is equal to the characteristic polynomial of the matrix, and

thus the eigenvalues of the matrix are distinct.

Proposition (4.1) shows how a non-Hermitian class of matrices can be determined

to be real diagonalizable via a simple diagonal similarity. This observation motivates

the next definition.

Definition 4.2 A matrix A ∈ Ps(C) is said to be pre-Hermitian if there exists

X ∈ Dn(C) such that X−1AX ∈ Hn(C). The class of pre-Hermitian matrices will

be denoted by PHn(C).

58

Diagonal simlarities have a long history and a variety of uses. For example, see

[6], [4] and [10]. The class of pre-Hermitian matrices have been generalized to the

class of matrices known as Hermitianable matrices [9]. In [9], the focus of study is

on Schur type stability properties of Hermitainable matrices.

Here we focuc on the characteristics of pre-Hermitian matrices.

Proposition 4.2 Hn(C) ⊂ PHn(C) ⊂ RDn(C)

Proof. We first show that Hn(C) ⊆ PHn(C). Let A ∈ Hn(C) and take X = In.

Then X−1AX = A ∈ PHn(C), since A is Hermitian. So Hn(C) ⊆ PHn(C). Next,

let A ∈ PHn(C). Then there is an X ∈ Dn(C) such that X−1AX = H, where

H∗ = H. This means that, there is a unitary matrix U such that U∗X−1AXU =

diag(λ1, . . . , λn), where λi are real numbers. Hence, PHn(C) ⊆ RDn(C). Next,

we show that the inclusion is proper. Let A =

[
1 2
1 1

]
∈ M2(R). Then A is not

Hermitian. Choose X = diag(2,
√

2). Then X−1AX =

[
1
√

2√
2 1

]
. This shows

that Hn(C) ⊂ PHn(C). Now let A =

[
10 1
0 1

]
∈ M2(R). Then the characteristic

polynomial of A is pA(t) = (10− t)(1− t). Thus, A is diagonalizable. However there

are no X ∈ D2(C) such that X−1AX is Hermitian, which shows PHn(C) ⊂ RDn(C)

and the proof is complete.

Note that in the proof of Proposition (4.1) we showed that the diagonal matrix

X can be chosen such that all entries on the diagonal could be taken to be positive.

In general, this holds for pre-Hermitian matrices.

Proposition 4.3 A matrix A ∈ PHn(C) if and only if there is a positive diagonal

matrix Y = diag(y1, . . . , yn), with yi > 0 for i = 1, . . . , n such that (AY)∗ = (AY).

Proof. Let A ∈ PHn(C). Then there is an X ∈ Dn(C) such that X−1AX =

H ∈ Hn(C). Since H is a Hermitian matrix, H = X−1AX = X∗A∗(X∗)−1 =

59

H∗. Hence AXX∗ = XX∗A∗. Then Y = XX∗ is a positive diagonal matrix and

AY = Y A∗ = (AY)∗, as desired. Conversely, let (AY)∗ = AY for some positive

diagonal matrix Y = diag(y1, . . . , yn). Let X = diag(
√
y1, . . . ,

√
yn), the positive

definite square root of Y . Then Y = X2 = XX∗. Now (AY)∗ = (AY) gives

XX∗A∗ = AXX∗, and this yields X−1AX = X∗A∗(X∗)−1 = (X−1AX)∗. Thus

X−1AX is Hermitian, or A ∈ PHn(C).

An equivalent statement to Proposition (4.3) is that A ∈ PHn(C) if and only if

A∗ = X−1AX for some positive diagonal matrix X. This observation is a useful tool

to show when a matrix is pre-Hermitian. The following results are basic properties

and characterizations of pre-Hermitian matrices.

Proposition 4.4 Let A ∈ PHn(C). Then An ∈ PHn(C) for all n.

Proof. Let A ∈ PHn(C). Then there is an X ∈ Dn(C) such that X−1AX =

H ∈ Hn(C). Thus Hk = X−1AkX ∈ PHn(C) for k = 1, . . . , n, and the result

follows.

Proposition 4.5 A matrix A ∈ PHn(C) if and only if V −1AV = Λ where Λ is a

real diagonal matrix and V = X−1UX for some U ∈ Un(C).

Proof. Suppose A ∈ PHn(C). Then there exists an X ∈ Dn(C) such that

X−1AX = H ∈ Hn(C). Therefore there is a unitary U ∈ Un(C) such that

U∗X−1AXU = U∗HU = Λ, where Λ is a real diagonal matrix. Then Λ = X−1ΛX =

X−1U∗XAX−1UX = V −1AV , where V = X−1UX. Conversely, let V −1AV = Λ,

where Λ is a real diagonal matrix and V = X−1UX for some invertible diagonal ma-

trix X, and U ∈ Un(C). Then Λ = (X−1UX)−1A(X−1UX) = X−1U∗XAX−1UX.

This yields UΛU∗ = XAX−1, and since UΛU∗ is Hermitian we know that

A ∈ PHn(C).

60

Another class of matrices that are important in studying pre-Hermitian matrices

is the cycle balanced matrix.

Definition 4.3 [9, p. 2498] A matrix A Mn(C) is said to be cycle balanced if for

any sequence i1, i2, . . . , ik ∈ {1, 2, . . . , n} we have

ai1i2ai2i3 · · · aiki1 = ai1ikaikik−1
· · · ai2i1 .

The following theorem lists equivalent conditions for a matrix to be pre-Hermitian.

The equivalence of (1) and (2) was shown in [13] and the remaining implications

were shown above in Proposition (4.2) and the comments thereafter.

Theorem 4.7 [9, p. 2498] For A ∈Mn(C), the following statements are equivalent:

1. A is pre-Hermitian.

2. A is cycle balanced and strongly sign-symmetric.

3. There exists a positive diagonal matrix K such that K−1AK is Hermitian.

4. There is a positive diagonal matrix Y such that (AY)∗ = AY.

We now turn our attention to properties that the class of pre-Hermitian matrices

share with the class of Hermitian matrices. For this reason we give the following

definitions and observations, beginning with the definition of a principal submatrix

of a matrix.

Definition 4.4 [7, Definition 0.7.1] Suppose A ∈ Mn(C), and let the indexed set

α = {i1, . . . , ik} ⊆ {1, . . . , n}, where the ij’s are listed in increasing order, be given.

Then the principal submarix of A, denoted by A(α), is the matrix that lies in the

rows and columns of A indexed by α.

61

It is well known that the every principal submatrix of a Hermitian matrix is

Hermitian [7, Exercise 1, pp. 174]. The class of pre-Hermitian matrices share this

property with the Hermitian matrices. The result is our next proposition.

Proposition 4.6 Let A be pre-Hermitian. Then every principal submatrix of A is

pre-Hermitian.

Proof. Suppose A ∈ PHn(C) and let α = {i1, . . . , ik} ⊆ {1, . . . , n} be an in-

dexed set such that A(α) ∈Mk(C) is the principal submatrix of A indexed by α. We

will show thatA(α) is a pre-Hermitian matrix. SinceA ∈ PHn(C), there is an invert-

ible diagonal matrix X = diag(x1, . . . , xn) ∈ Dn(C) such that X−1AX = H, where

H = H∗. Let H(α) ∈ Mk(C) be the principal submatrix of H indexed by α. Then

H(α) is a Hermitian matrix such that H(α) = (X−1AX)(α) = X−1(α)A(α)X(α),

where X(α) is a k-by-k invertible diagonal matrix. We conclude the principal sub-

matrix A(α) of A is pre-Hermitian.

One salient feature that can be observed from the proof of Proposition (4.6) is

that if a pre-Hermitian matrix A is diagonally similar to a Hermitian matrix H,

then for any indexed set α, the principal submatrix A(α) is precisely diagonally

similar to the principal submatrix H(α) of the Hermitian matrix H. An important

consequence of this observation is that the class of pre-Hermitian matrices main-

tains some desirable properties of the class of Hermitian matrices. The interlacing

property of the eigenvalues between the principal submatrices is preserved, and the

majorization of the vector of diagonal elements of the matrix and the vector of the

eigenvalues is also preserved.

Next, Hermitian matrices have a nice spectral structure. Since principal sub-

matrices of Hermitian matrices are Hermitian, and the eigenvalues of Hermitian

62

matrices are real, it is natural to ask questions about the relationship between the

eigenvalues of a Hermitian matrix and its principal submatrices. Moreover, the di-

agonal entries of Hermitian matrix are real. So it is natural to seek relationships

between the diagonal entries and the real eigenvalues of a Hermitian matrix.

The well known interlacing property and the majorization of the eigenvalues of

a Hermitian matrix by its diagonal entries characterize these properties. We define

these terms to continue the discussion.

Definition 4.5 Let S1 = {λ1, . . . , λn} and S2 =
{
λ′1, . . . , λ

′
n+1

}
be two sets of real

numbers that are listed in increasing order. Then S1 and S2 are said to interlace if

λ′1 ≤ λ1 ≤ λ′2 ≤ λ2 ≤ · · · ≤ λn−1 ≤ λ′n ≤ λn ≤ λ′n+1.

Definition 4.6 [7, Definition 4.3.24] Let S1 = {α1, . . . , αn} and S2 = {β1, . . . , βn}

be sets of real numbers such that the αi’s and βi are listed in increasing order. Then

the set S2 is said to majorize the set S1 if

k∑
i=1

βi ≥
k∑
i=1

αi, k = 1, . . . , n− 1,

and
n∑
i=1

βi =
n∑
i=1

αi.

Definition 4.7 Let A ∈Mn(C) be such that A =

[
A′ y
zT ann

]
with A′ ∈Mn−1(C),

y, z ∈ Cn−1, and ann ∈ R. Let σ(A) = {λ1, . . . , λn}, and σ(A′) =
{
λ′1, . . . , λ

′
n−1
}

be the eigenvalues, listed in increasing order, of the matrices A and A′, respectively.

Assume that σ(A) and σ(A′) are sets of real numbers. Then the matrices A and A′

are said to have the interlacing property if σ(A) and σ(A′) interlace.

The statements of the interlacing and majorization properties are now given. The

first relates the eigenvalues of a Hermitian matrix and its principal submatrices. The

second relates the diagonal entries of a Hermitian matrix and its eigenvalues.

63

Theorem 4.8 [7, Theorem 4.3.8] Let A ∈ Hn(C), y ∈ Cn be a given vector, and

a ∈ R be a given real number. Let A′ ∈ Mn+1(C) be the Hermitian matrix obtained

by bordering A with y and a; i.e.,

A′ ≡
[
A y
y∗ a

]
.

Let the eigenvalues of A and A′ be denoted by {λ1, · · · , λn} and
{
λ′1, · · · , λ′n+1

}
,

respectively, and assume that they are arranged in increasing order. Then these two

sets of real eigenvalues interlace.

Theorem 4.9 [7, Theorem 4.3.26] Let A ∈ Hn(C). The set of diagonal entries of

A majorizes the set of eigenvalues of A.

Analogous results to Theorems (4.8) and (4.9) hold for the class of pre-Hermitian

matrices.

Theorem 4.10 Let A ∈ PHn(C). Then the matrix A has the interlacing property.

Proof. Let A ∈ PHn(C), and write A =

[
A′ y
zT ann

]
, where A′ is the

(n− 1)-by-(n− 1) principal submatrix of A. Let σ(A) = {λ1, . . . , λn}, and σ(A′) ={
λ′1, . . . , λ

′
n−1
}

be the eigenvalues, listed in increasing order, of the matrices A and

A′ respectively. Since A ∈ PHn(C), A′ ∈ PHn−1(C) by Proposition (4.6). Further-

more, there is a diagonal matrix X = diag(x1, . . . , xn−1, xn) =

[
x′ 0
0 xn

]
∈ Dn(C)

such that X−1AX =

[
H ′ y
y∗ ann

]
= H ∈ Hn(C), where is H ′ = (X ′)−1A′X ′ is the

principal submatrix of the Hermitian matrix H. Since A is similar to H and A′ is

similar to H ′, we have σ(A) = σ(H) and σ(A′) = σ(H ′). We conclude that A has

the interlacing property by Theorem (4.8).

Theorem 4.11 Let A ∈ PHn(C). Then the set of diagonal entries of A majorizes

the set of eigenvalues of A.

64

Proof. Let A be diagonally similar to a Hermitian matrix H. Then A has the

same diagonal entries and spectrum as the Hermitian matrix H. By Theorem (4.9),

the result holds.

Matrix recognition is an important question in matrix theory. Given a matrix

A ∈ Mn(C), it is important to determine what kind of matrix the matrix A is. In

other words, it is important to identify the class of matrices in which A belongs. For

special classes of matrices this is a simple task. For example, Hermitian matrices

are easy to recognize, since we just check that aij = aji for all i and j. A few

other classes of matrices that are easy to recognize are normal matrices, idempotent

matrices, and unitary matrices. However, there are matrices that are very difficult

to recognize. One such class is that of the totally positive matrices (see [3]). A

matrix is totally nonnegative if each of its minors is nonnegative. This is a very

difficult requirement to check in practice. Having a simple criterion that guarantees

a matrix is in a certain class is a desirable property to have.

The following result gives an easy to recognize criterion to determine if a given

matrix is pre-Hermitian. For the simplicity of the proof of the main theorem, it is

assumed that the entries of the last row of the pre-Hermitian matrix are non-zero.

Proposition 4.7 Let A = [aij] ∈ Ps(C) such that anj 6= 0 for j = 1, . . . , n. Then

A ∈ PHn(C) if and only if aijaniajn = ajiainanj, for all i, j = 1, . . . , n.

Proof. Let A ∈ PHn(C). Then by proposition (4.3) there is a positive diagonal

matrix Y = diag(y1, . . . , yn) with yi > 0 for i = 1, . . . , n such that AY = (AY)∗. In

matrix form, this means

65


a11y1 a12y2 · · · a1nyn
a21y1 a22y2 · · · a2nyn

...
...

...
...

an1y1 an2y2 · · · annyn

 =


a11y1 a21y1 · · · an1y1
a12y2 a22y2 · · · an2y2

...
...

...
...

a1nyn an2yn · · · annyn

 .
Equating the last column of the two matrices, we obtain yi =

ain
ani

yn, for i =

1, . . . , n. Since aijyj = ajiyi, we have aij
ajn
anj

= aji
ain
ani

. Thus, we get aijaniajn =

ajiainanj for all i, j = 1, . . . , n. Conversely, assume aijaniajn = ajiainanj for all

i, j = 1, . . . , n. Define y1 =
a1n
an1

> 0, y2 =
a2n
an2

> 0, . . . ,
a(n−1)n
an(n−1)

> 0, and yn = 1.

Let Y = diag(y1, . . . , yn). Then Y is a positive diagonal matrix such that AY =

[aijyj] = [aij
ajn
anj

] = [aji
ain
ani

] = [ajiyi] = (AY)∗. We conclude that A ∈ PHn(C) by

Proposition (4.3).

In Proposition (4.7) we see that there are n2 products to check to determine if

a matrix A ∈ Mn(C) is pre-Hermitian. However, we can significantly reduce the

number of products we need to compute. For the discussion that follows, we assume

that aij ∈ R for i, j = 1, . . . , n. First, if j = n, then the triple product in Proposition

(4.7) is always an identity, and it may be discarded from the n2 products. Secondly,

since we are finding a diagonal matrix X = diag(x1, . . . , xn) such that X−1AX is

Hermitian, we are choosing xi’s where i = 1, . . . , n so that aij
xj
xi

= aji
xi
xj

. So we

may also deduct the products in the case that j = i. Lastly, aij gives the same triple

product as aji for j 6= i, which means it is unnecessary to compute the products of

aji in Proposition (4.7) whenever j < i. Another way of saying this is that we only

need to compute the triple product using aij for i < j, with j = i + 1, . . . , n − 1.

Putting this all together we obtain the number of triple products actually needed

to check if a matrix is pre-Hermitian is
∑n−2

i=0 i = (n−1)(n−2)
2

.

66

Remark 4.1 In Proposition (4.7) the number of triple products required to check

if a matrix is pre-Hermitian is
(n− 1)(n− 2)

2
. Moreover, the

(n− 1)(n− 2)

2
triple

products needed to compute are those involving aij where i < j and j = i+1, . . . , n−1.

Remark (4.1) greatly reduces the amount of computation required to implement

Proposition (4.7). For example, For matrices in M3(C) we see that there is only one

triple product computation to determine whether the given matrix is pre-Hermitian.

For matrices in M4(C) we see that there are only three triple products computed

to determine whether the matrix is pre-Hermitian. The next example shows that

the determination of whether a matrix is pre-Hermitian is indeed a computationally

simple task.

Example 4.4 Let

A =


−1 −2 20 10
−1 1 −5 5
2 −1 1 1
3 3 3 −1

 ∈M4(R)

To determine if the matrix A is pre-Hermitian, it suffices to verify only three triple

products in Proposition (4.7). Those three triple products are the triple products

involving the entries a12, a13, and a23. Accordingly, we must show that a12a41a24 =

a21a14a42, a13a41a34 = a31a14a43, and a23a42a34 = a32a24a43. In this example we have

−2× 3× 5 = −1× 10× 3, 20× 3× 1 = 2× 10× 3 , and −5× 3× 1 = −1× 5× 3,

respectively. Thus, by Proposition (4.7), the matrix A is pre-Hermitian.

This example shows the power of Proposition (4.7). To see if 4× 4 matrix with

complex entries has the interlacing property, majorization of eigenvalues by diagonal

entries, and is real diagonalizable, we only had to verify three triple products.

The following result further characterizes the pre-Hermitian matrices.

67

Proposition 4.8 Let A ∈Mn(C). Then A is real diagonalizable if and only if A is

unitarily similar to a pre-Hermitian matrix.

Proof. Suppose that R−1AR = Λ, where Λ is a real diagonal matrix. Use the

singular value decomposition of R to write R = V ∗ΣU , where U and V are unitary

matrices and Σ is a positive diagonal matrix. Then R−1AR = U∗Σ−1V AV ∗ΣU = Λ.

Multiply both sides of the equation on the left by Σ and on the right by Σ−1 to

obtain ΣU∗Σ−1V AV ∗ΣUΣ−1 = ΣΛΣ−1 = Λ. This shows that V AV ∗ ∈ PHn(C) by

Proposition (4.5).

Now suppose A is unitarily similar to a pre-Hermitian matrix. In other words,

U∗AU ∈ PHn(C). This means there exists X ∈ Dn(C) such that X−1U∗AUX =

H, where H = H∗. Since X−1U∗AUX is Hermitian, there is a unitary V such

that V ∗(X−1U∗AUX)V = Λ, where Λ = diag(λ1, . . . , λn) with λi ∈ R for i =

1, . . . , n. If we set R = UXV , then R−1AR = Λ, and we conclude that A is real

diagonalizable.

It is natural to ask what type of similarities will preserve the pre-Hermitian

structure. The following two results show the property of being pre-Hermitian is

preserved under permutation and diagonal similarity.

Proposition 4.9 A ∈Mn(C) is pre-Hermitian if and only if ΠTAΠ ∈ PHn(C) for

all permutation matrices Π ∈Mn(C).

Proof. Assume that ΠTAΠ ∈ PHn(C) for all permutation matrices Π. Since

the identity matrix In is a permutation matrix A = ITnAIn ∈ PHn(C). Now let

A ∈ PHn(C). We show that ΠTAΠ ∈ PHn(C) for any permutation matrices

Π ∈ Mn(C). Since A is pre-Hermitian, there is a Y ∈ Dn(C) such that Y −1AY is

Hermitian. We note for any permutation Π ∈ Mn(C) there is a matrix X ∈ Dn(C)

68

such that ΠTYΠ = X ∈ Dn(C); that is, YΠ = ΠX. Thus for any permutation

matrix Π ∈ Mn(C) we have ΠTY −1AYΠ = X−1ΠTAΠX ∈ Hn(C), for some X ∈

Dn(C). This shows that ΠTAΠ ∈ PHn(C).

Proposition 4.10 Let A ∈ PHn(C). Then D−1AD ∈ PHn(C) for all invertible

diagonal matrices D ∈ Dn(C).

Proof. Let A ∈ PHn(C). Then there is a positive diagonal matrix Y1 such that

Y −11 AY1 = A∗ by Proposition (4.3). Suppose B = D−1AD for some D ∈ Dn(C).

We will show B ∈ PHn(C). Let Y = D−1Y1D
−∗. Then Y is a positive diagonal

matrix such that Y −1BY = D∗Y −11 DBD−1Y1D
−∗ = D∗Y −11 DD−1ADD−1Y1D

−∗ =

D∗A∗D−∗ = B∗. Thus, by Proposition (4.3), B ∈ PHn(C).

Combining the previous two propositions we obtain the following result about

pre-Hermitian matrices.

Proposition 4.11 Let A ∈ PHn(C). Then ΠTX−1AXΠ and X−1ΠTAΠX ∈

PHn(C) for X ∈ Dn(C) and Π ∈ Πn.

It is well known that if a Hermitian matrix A is similar to a diagonal matrix,

then the similarity can be taken as a unitary similarity. That is, let A ∈Mn(C) be

Hermitian. If Λ = R−1AR for some invertible R ∈ Mn(C) and Λ ∈ Dn(R), then

there is a unitary U ∈ Un(C) such that Λ = R−1AR = U∗AU . An analogous result

holds for pre-Hermitian matrices. For the purpose of stating our next proposition,

a definition, theorem, and corallary are needed.

Definition 4.8 An invertible matrix V ∈Mn(C) is said to be pre-unitary if V =

X−1UX, for some diagonal X ∈ Dn(C) and U ∈ Un(C).

69

Theorem 4.12 [7, Exercise 9, pp. 97] Let A ∈ Mn(C), B ∈ Mm(C), and C ∈

Mn,m(C) be given. Then the matrix equation AX −XB = C has a unique solution

if and only if σ(A) ∩ σ(B) = ∅.

Corollary 4.1 [15, Exercise 4.31, pp. 83] Let A ∈Mn(C) and suppose P ∈Mn(C)

is positive definite. If AP = PA, then AP+ 1
2 = P+ 1

2A, where P+ 1
2 is the positive

definite square root of the positive definite matrix P ∈Mn(C).

Proposition 4.12 Let A ∈ PHn(C). If R−1AR = Σ, where Σ ∈ Dn(R), then there

is a pre-unitary matrix V ∈Mn(C) such that Σ = R−1AR = V −1AV .

Proof. Let A ∈ PHn(C). Suppose A = R−1ΣR for some invertible matrix

R ∈ Mn(C) and a positive diagonal matrix Σ ∈ Dn(R). Then A∗ = R∗ΣR−∗, and

by Proposition (4.3) there is a positive diagonal matrix Y ∈ Dn(R) such that A∗ =

Y −1AY . Hence, we have Y −1AY = Y −1R−1ΣRY = R∗ΣR−∗ = A∗, or ΣRY R∗ =

RY R∗Σ. Set B = RY R∗. Then B is a positive definite matrix. By Corollary (4.1),

ΣB+ 1
2 = B+ 1

2 Σ. Notice that I = (B+ 1
2)−1B(B+ 1

2)−1 = (B+ 1
2)−1RY R∗(B+ 1

2)−1 =

(B+ 1
2)−1RY + 1

2Y + 1
2R∗(B+ 1

2)−1 = ((B+ 1
2)−1RY + 1

2)((B+ 1
2)−1RY + 1

2)∗. In other words,

(B+ 1
2)−1RY + 1

2 is a unitary matrix. Set V = (B+ 1
2)−1RY + 1

2 ∈ Un(C). Now A =

R−1ΣR = R−1B+ 1
2 Σ(B+ 1

2)−1R = Y + 1
2 (Y + 1

2)−1R−1B+ 1
2 Σ(B+ 1

2)−1RY + 1
2 (Y + 1

2)−1 =

Y + 1
2V −1(Y + 1

2)−1ΣY + 1
2V (Y + 1

2)−1, where Y + 1
2V (Y + 1

2)−1 is a pre-unitary matrix and

the proof is complete.

We now turn our attention to computing the minimal polynomial of pre-Hermitian

matrices. The idea behind computing the minimal polynomial of pre-Hermitian

matrices is simple: Pre-Hermitian matrices are defined to be matrices that are di-

agonally similar to a Hermitian matrix. Thus, if a matrix A is pre-Hermitian, we

70

may apply the diagonal similarity to obtain X−1AX = H, where H is a Hermi-

tian matrix. Once the pre-Hermitian matrix has been transformed to a Hermitian

matrix, finding the minimal polynomial can be achieved by transforming the Her-

mitian matrix to a tridiagonal matrix as discussed in Section (3.2). Moreover, using

Remark (4.1), we may easily check if a given matrix A ∈ Mn(C) is pre-Hermitian.

We illustrate this in the next example.

Example 4.5 Let

A =

 1 4 −8
1 10 3
−2 3 1

 ∈M3(R).

Applying the observation made in Remark (4.1), we only need to check that

a12a31a23 = a21a13a23. This computation is 4 × (−2) × 3 = 1 × (−8) × 3, so A is

pre-Hermitian. Choosing X = diag(2, 1, 1), we calculate

X−1AX =

 1 2 −4
2 10 3
−4 3 1

 .
Now that we have found the diagonal matrix X such that X−1AX is Hermitian,

we use a Givens matrix to tridiagonalize this Hermitian matrix. Choosing

U(θ, 1, 3) =


1√
2

0
1√
2

0 1 0

− 1√
2

0
1√
2

 .
Next, we calculate

U∗(θ, 1, 3)X−1AXU(θ, 1, 3) =


5 − 1√

2
0

− 1√
2

10
5√
2

0
5√
2
−3

 .

Since the matrix A has been tridiagonalized, we may use Remark (3.1) to com-

pute the minimal polynomial of A. We start with p0(t) = 1 and p1(t) = t − 10.

71

Then

p2(t) = (t− a2)p1(t)− b1c1p0(t)

= t2 − 15t+
99

2

and

p3(t) = (t− a3)p2(t)− b2c2p1(t)

= t3 − 12t2 − 8t+ 211

The minimal polynomial of matrix A is qA(t) = t3 − 12t2 − 8t+ 211.

CHAPTER 5

Summary and topics of further study

In this dissertation, we introduced the MP algorithm which gives us a new and

simple way to calculate the minimal polynomial of any matrix A ∈ Mn(C). We

showed that the MP algorithm is extremely easy to implement to matrices of rela-

tively small size. We then gave a modified version of the MP algorithm that is easier

to apply. After we established the MMP algorithm, we gave several applications of

the minimal polynomial.

After we considered the applications of the MMP algorithm, we showed that

the MMP algorithm significantly simplifies when it is applied to matrices of special

structure. The two special strucutred matrices we considered were the class of

lower Hessenberg matrices and the class of tridiagonal matrices. In the case of an

unreduced lower Hessenberg matrix, we saw that only the first row of the matrix

was necessary in the MMP alogrithm to compute its minimal polynomial. For the

tridiagonal matrix, we gave a recursive formula to compute its minimal polynoimial.

We concluded this dissertation by giving a systematic way for determining if

a matrix is or is not real diagonalzable. We also defined a new class of real di-

agonalizable matrices, the pre-Hermitian matrices. We showed that there is an

computationally simple way to verify if a matrix is pre-Hermitian and showed how

we may compute the minimal polynomial of a pre-Hermitian matrix.

Topics of future study include:

• We saw that the rvec of matrix was a useful operation in the MP algorithm to

73

compute the minimal polynomial of a matrix. Further, for the class of lower

Hessenberg matrices we were able to modify the rvec operation and use only

the first row of the matrix to compute the minimal polynomial. It is natural

to seek out other types of rvec-type operations for other classes of matrices.

• We would like to explore the MMP algorithm on different types of matrices.

For example, the class of (0, 1)-matrices are defined to be matrices that only

have 0’s and 1’s for its entries. Given this structure, the MMP algorithm will

be very simple to implement.

• We would like to find other applications of the MMP algorithm and the GU

matrix.

• Computer implemention and numerical considerations of the MMP algorithm.

• We continue our study of pre-Hermitian matrices. As it is shown in section

(4.3), we have the following containments Hn(C) ⊂ PHn(C) ⊂ RDn(C). We

would like to extend this containment; that is, are there any other classes

of matrices C1, · · · , Ci such that Hn(C) ⊂ C1 ⊂ · · · ⊂ Ci ⊂ PHn(C) ⊂

RDn(C)? If any such class of matrices exist, we would like to study their

intrinsic properties.

• We would like to explore other types of class of pre-matrices and study their

basic properties. So far we have only defined pre-Hermitian matrices. We

can similarly define pre-unitary, pre-normal, pre-positive definite, etc. For

example, a matrix is positive definite if and only if the determinant of every

leading principal submatrix is positive [7, Theorem 7.2.5]. Does something

similar hold for pre-positive definite?

REFERENCES

[1] S. Bialas and m. Bialas. An algorithm for the calculation of the minimal poly-
nomial. Bulletin of the Polish Academy of sciences, 56, 2008.

[2] Charles W. Curtis. Linear Algebra: An introductory approach. Spinger, New
York, 1984.

[3] Shaun M. Fallat and Charles R. Johnson. Totally Nonnegative Matrices. Prince-
ton Series in Applied Mathematics, Princeton University Press, 2011.

[4] Xin-Lei Fenga, Zhongshan Li, and Ting-Zhu Huang. Is every nonsingular matrix
diagonally equivalent to a matrix with all distinct eigenvalues? Linear Algebra
and its Applications, 436:120125, 2012.

[5] F. R. Gantmacher. The theory of matrices volume 1. Chelsea Publishing com-
pany, New York, 1959.

[6] Daniel Hershkowitz and Hans Schneider. One-sided simultaneous inequalities
and sandwich theorems for diagonal similarity and diagonal equivalence of non-
negative matrices. Electronic Journal of Linear Algebra, 10:81–101, 2003.

[7] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press,
New York, 1985.

[8] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge Univer-
sity Press, New York, 1991.

[9] Charles R. Johnson, Terry D. Lenker, and Sivaram K. Narayan. Schur-type
stability properties and complex diagonal scaling. Linear Algebra And Its Ap-
plications, 429 (2008) 2497-2520, 2008.

[10] Charles R. Johnson, David P. Stanford, D. Dale Oleskyt, and P. van den Driess-
ches. Dominant eigenvalues under trace-preserving diagonal perturbations. Lin-
ear Algebra and its Applications, 212213:415–435, 1994.

[11] B. E. Meserve. Fundamental concepts of algebra. Dover Publications, Mineola,
New York, 1982.

[12] Carl D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, Philadel-
phia, 2000.

[13] P. Nowosad. Symmetrization of matrices by diagonal matrices. MRC Technical
Summary report 1083. Mathematics Research Center, University of Wisconsin,
Madison, Wisc., 1970, 1970.

74

75

[14] Hans Schneider and George P. Barker. Matrices and Linear Algebra. Dover,
New York, 1968.

[15] Fuzhen Zhang. Linear Algebra: Challenging problems for students, second edi-
tion. The Johns Hopkins University Press, Baltimore, 2009.

