The MP Algorithm

Christopher Bailey Department of Mathematical Sciences Northern Illinois University

June 5, 2013

Outline

- The MP and MMP algorithm
- Unreduced lower Hessenberg matrices

The Minimal Polynomial

Given a matrix $A \in M_n(\mathbb{C})$, the minimal polynomial of A, denoted by $q_A(t)$, is defined to be the monic polynomial of minimal degree such that $q_A(A) = 0$.

The MP algorithm

Our algorithm depends on the set $D = \{A^0, A, A^2, \dots, A^n\}$ being linearly dependent.

The *rvec* operation

Let $A = [a_{ij}] \in M_n(\mathbb{C})$. Then a row vector, denoted by **rvec(A)**, is defined by

$$rvec(A) = [a_{11}, \dots, a_{1n} : a_{21}, \dots, a_{2n} : \dots : a_{n1}, \dots, a_{nn}] \in \mathbb{C}_{n^2}.$$

- 1. The map $f: M_n(\mathbb{C}) \to \mathbb{C}_{n^2}$ be defined by f(A) = rvec(A) is an isomorphism.
- 2. The set

$$S = \{v_0 = f(I), v_1 = f(A), v_2 = f(A^2), \dots, v_n = f(A^n)\}$$

is linearly dependent.

3. Why transform a matrix into a vector?

The GU matrix

Let $\{v_0, \ldots, v_k\} \subseteq \mathbb{C}_{n^2}$ and $B_{k+1} \in M_{k+1}(\mathbb{C})$ be given. We define $G_{\{v_0, \ldots, v_k\}}(B_{k+1}) \in M_{k+1, n^2+k+1}(\mathbb{C})$ to be the matrix,

$$G_{\{v_0,...,v_k\}}(B_{k+1}) \equiv \begin{bmatrix} v_0 & \| & & \\ v_1 & \| & \\ \vdots & \| & B_{k+1} \\ v_k & \| & \end{bmatrix}$$

The matrix $G_{\{v_0,...,v_k\}}(B_{k+1})$ will be called the **Gaussian updat**ing (GU) matrix.

How the GU matrix is used in the MP algorithm

- 1. Begin with $G_{\{v_0\}}(B_1) = [v_0 || 1] = [e_1^T e_2^T \cdots e_n^T || 1]$ where $B_1 = I_1$
- 2. Next, construct $G_{\{v_0,v_1\}}(B_2)$ where $B_2 = \begin{bmatrix} B_1 & 0 \\ 0 & 1 \end{bmatrix} \in M_2(\mathbb{C}).$
- 3. Gaussian row operations are performed to determine whether or not v_0 and v_1 are linearly dependent.
- 4. Out of this we have a new GU matrix, $G_{\{v_0,v_1'\}}(B_2')$, where v_1' is the vector obtained from v_1 in the Gaussian elimina-

tion, and B'_2 is the matrix obtained from B_2 by the Gaussian elimination.

- 5. Successively, we construct the GU matrix $G_{\{v_0, v'_1, \dots, v'_{k-1}, v_k\}}(B_{k+1})$, where $B_{k+1} = \begin{bmatrix} B'_k & 0\\ 0 & e^T_k \end{bmatrix}$.
- 6. Gaussian elimination is used to determine whether or not the newly introduced vector, v_k , is linearly dependent to the vectors in the set $\{v_0, v'_1, \ldots, v'_{k-1}\}$.
- 7. From this we obtain a new GU matrix, $G_{\{v_0, v'_1, \dots, v'_{k-1}, v'_k\}}(B'_{k+1})$, where v'_k is the vector obtained from v_k in the Gaussian elim-

ination, and B'_{k+1} is the matrix obtained from B_{k+1} in the Gaussian elimination.

8. This process must produce a zero vector, v'_k , for some $k \leq n$

The matrix B_{k+1} in the GU matrix

1. Start with $B_1 = I_1$

2.
$$B_2 = \begin{bmatrix} B_1 & 0 \\ 0 & e_1^T \end{bmatrix}$$

- 3. Construct the GU matrix $G_{\{v_0,v_1\}}(B_2)$
- 4. Use Gaussian elimination to obtain the GU matrix $G_{\{v_0,v_1'\}}(B_2')$
- 5. The first column of B'_2 is the coefficient of I_n in the linear combination of v'_1 and the second column of B'_2 is the coefficient of A in the linear combination of v'_1 .

- 6. When $G_{\{v_0,v'_1,...,v'_k\}}(B'_{k+1})$ is obtained from $G_{\{v_0,v'_1,...,v'_{k-1},v_k\}}(B_{k+1})$ using Gaussian elimination.
 - (a) Then the first column of B'_{k+1} is the coefficient of I_n in the linear combination of v'_k ;
 - (b) The second column of the matrix B'_{k+1} is the coefficient of A in the linear combination of v'_k ;
 - (c) In general the k-th column of the matrix B'_{k+1} is the coefficient of A^k in the linear combination of v'_k .
- 7. The coefficients of the minimal polynomial are given in the last row of B'_{k+1} .

The Minimal Polynomial Algorithm (MP)

For a given $A \in M_n(\mathbb{C})$, let $v_i = rvec(A^i)$, and do the following. **Step 1.** (Initialization). Create $G_{\{v_0\}}(I_1)$, set $v_0 \equiv v'_0$, i = 1, and $B_1 \equiv I_1$. **Step 2.** Compute v_i and construct $G_{\{v'_0,...,v'_{i-1},v_i\}}(B_{i+1})$ where $B_{i+1} \equiv \begin{bmatrix} B'_i & 0\\ 0 & e_i^T \end{bmatrix}$. Use Gaussian elimination to obtain $G_{\{v'_0,...,v'_{i-1},v'_i\}}(B'_{i+1})$.

• If $v'_i \equiv 0$ stop and proceed to Step 3.

• If $v'_i \neq 0$, increment *i* by 1 and repeat Step 2.

Step 3. For i = k such that $v'_k \equiv 0$, the entries of the last row of B'_{k+1} , $b_{k+1,j} \in \mathbb{C}$ with j = 1, ..., k+1, are the coefficients of the minimal polynomial of the matrix $A \in M_n(\mathbb{C})$.

Example 1 We use the MP algorithm to compute the minimal polynomial of the matrix

$$A = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ 2 & 0 & 1 \end{bmatrix} \in M_3(\mathbb{R})$$

1. Compute
$$v_0 = v'_0 = rvec(I_3) = \begin{bmatrix} 1 & 0 & 0 & : & 0 & 1 & 0 & : & 0 & 0 & 1 \end{bmatrix}$$

2. Construct

Compute
$$v_1 = rvec(A) = \begin{bmatrix} 1 & 1 & 0 & : & -1 & 2 & 1 & : & 2 & 0 & 1 \end{bmatrix}$$

Construct

$$G_{\{v'_0,v_1\}}(I_2) = \begin{bmatrix} 1 & 0 & 0 & : & 0 & 1 & 0 & : & 0 & 0 & 1 & \parallel & 1 & 0 \\ 1 & 1 & 0 & : & -1 & 2 & 1 & : & 2 & 0 & 1 & \parallel & 0 & 1 \end{bmatrix}.$$

Obtain the GU matrix by Gaussian elimination

$$G_{\{v'_0,v'_1\}}(B'_2) = \begin{bmatrix} 1 & 0 & 0 & : & 0 & 1 & 0 & : & 0 & 0 & 1 & \parallel & 1 & 0 \\ 0 & 1 & 0 & : & -1 & 1 & 1 & : & 2 & 0 & 0 & \parallel & -1 & 1 \end{bmatrix}.$$

Since $v'_1 \neq 0$, the alorithm continues

Compute

$$v_2 = rvec(A^2) = \begin{bmatrix} 0 & 3 & 1 & : & -1 & 3 & 3 & : & 4 & 2 & 1 \end{bmatrix}$$

Consruct the GU matrix

$$G_{\{v'_0,v'_1,v_2\}}(B_3) = \begin{bmatrix} 1 & 0 & 0 & : & 0 & 1 & 0 & : & 0 & 0 & 1 & \parallel & 1 & 0 & 0 \\ 0 & 1 & 0 & : & -1 & 1 & 1 & : & 2 & 0 & 0 & \parallel & -1 & 1 & 0 \\ 0 & 3 & 1 & : & -1 & 3 & 3 & : & 4 & 2 & 1 & \parallel & 0 & 0 & 1 \end{bmatrix}.$$

Obtain the GU matrix by Gaussian elimination

$$G_{\{v'_0,v'_1,v'_2\}}(B'_3) = \begin{bmatrix} 1 & 0 & 0 & : & 0 & 1 & 0 & : & 0 & 0 & 1 & \parallel & 1 & 0 & 0 \\ 0 & 1 & 0 & : & -1 & 1 & 1 & : & 2 & 0 & 0 & \parallel & -1 & 1 & 0 \\ 0 & 0 & 1 & : & 2 & 0 & 0 & : & -2 & 2 & 1 & \parallel & 3 & -3 & 1 \end{bmatrix}.$$

Since $v'_2 \neq 0$, the algorithm continues.

Compute

$$v_3 = rvec(A^3) = \begin{bmatrix} -1 & 6 & 4 & : & 2 & 5 & 6 & : & 4 & 8 & 3 \end{bmatrix}$$

Construct the GU matrix $G_{\{v'_0, v'_1, v'_2, v_3\}}(B_4) =$

٠

The new GU matrix is $G_{\{v'_0, v'_1, v'_2, v'_3\}}(B'_4) =$

Γ	1	0	0	:	0	1	0	:	0	0	1		1	0	0	0]
	0	1	0	:	-1	1	1	:	2	0	0		-1	1	0	0
	0	0	1	:	2	0	0	:	-2	2	1	Ï	3	-3	1	0
	0	0	0	:	0	0	0	:	0	0	0		-5	6	-4	1]

Since $v'_3 \equiv 0$, the algorithm terminates.

The coefficients of the minimal polynomial can be read off from

the last row of the matrix

$$B_4' = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 3 & -3 & 1 & 0 \\ -5 & 6 & -4 & 1 \end{bmatrix}.$$

The minimal polynomial of A is $q_A(t) = -5 + 6t - 4t^2 + t^3$

The MMP algorithm

The Modified Minimal Polynomial Algorithm (MMP)

For a given $A \in M_n(\mathbb{C})$, do the following.

Step 1. Create $G_{\{v_0\}}(I_1)$, set $v_0 = rvec(I_n) \equiv v'_0$, set i = 1, and $B_1 \equiv I_1$ Step 2. Compute $v_i = v'_{i-1}(I \otimes A)$ and construct the GU matrix $G_{\{v'_0, \dots, v'_{i-1}, v_i\}}(B_{i+1})$ where $B_{i+1} \equiv \begin{bmatrix} B'_i & 0\\ 0 & b \end{bmatrix}$, such that $b \in \mathbb{C}_i$ are the entries of the last row of B'_i . Use Gaussian elimination to obtain $G_{\{v'_0, \dots, v'_{i-1}, v'_i\}}(B'_{i+1})$.

• If $v'_i \equiv 0$ stop and proceed to Step 3.

• If $v'_i \neq 0$, increment *i* by 1 and repeat Step 2.

Step 3. For i = k such that $v'_k \equiv 0$, the entries of the last row of B'_{k+1} , $b_{k+1,j} \in \mathbb{C}$ for j = 1, ..., k+1, are the coefficients of the minimal polynomial of the matrix $A \in M_n(\mathbb{C})$.

The benefits

1. v_k is obtained from v'_{k-1} by $v_i = v'_{i-1}(I \otimes A)$

2. Obtaining B_{k+1}

The matrix B_{k+1}

Suppose we have computed the following GU matrix

$$G_{\left\{v'_{0},\ldots,v'_{k-1}\right\}}(B'_{k}) = \begin{bmatrix} v'_{0} & \parallel & & \\ v'_{1} & \parallel & B'_{k-1} \\ \vdots & \parallel & & \\ v'_{k-1} & \parallel b_{1} & \ldots & b_{k} \end{bmatrix}.$$

The (k + 1)-th row of the matrix B_{k+1} may be obtained by shifting the entries to the right 1 entry.

$$G_{\{v'_{0},\dots,v'_{k-1},v_{k}\}}(B_{k+1}) = \begin{bmatrix} v'_{0} & \| \\ v'_{1} & \| & B'_{k-1} \\ \vdots & \| \\ v'_{k-1} & \|b_{1} & \dots & b_{k} & 0 \\ v_{k} & \|0 & b_{1} & \dots & b_{k} \end{bmatrix}$$

Example 2

We use the MMP algorithm to compute the minimal polynomial of the matrix

$$A = \begin{bmatrix} 3 & -1 & -1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{bmatrix} \in M_4(\mathbb{C}).$$

Construct

Compute

$$v_1 = v'_0(I \otimes A)$$

= $\begin{bmatrix} 3 & -1 & -1 & 0 & :1 & 1 & -1 & 0 & :1 & -1 & 0 & 1 \end{bmatrix}$

Construct

24

Obtain the GU matrix by Gaussian elimination

Since $v'_1 \neq 0$, we continue the algorithm

Compute

$$v_2 = v'_1(I \otimes A)$$
$$= \begin{bmatrix} -2e_1^T & -2e_2^T & -2e_3^T & -2e_4^T \end{bmatrix}$$

Construct $G_{\{v'_0, v'_1, v_2\}}(B_3) =$

26

Obtain the GU matrix by Gaussian elimination $G_{\{v'_0,v'_1,v'_2\}}(B'_3) =$

Since $v'_2 \equiv 0$ the MMP algorithm terminates.

The minimal polynomial is $q_A(t) = 2 - 3t + t^2$.

The MMP Algorithm for Unreduced Lower Hessenberg Matrices

For an unreduced lower Hessenberg matrix $A \in M_n(\mathbb{C})$, let v_i be the first row of the matrix $A^{(i)}$, $A^{(0)} = I_n$, and do the following.

Step 1. Create
$$G_{\{v_0\}}(I_1)$$
, set $v_0 = e_1^T \equiv v'_0$, where $e_1^T \in \mathbb{C}_n$, set $i = 1$, and $B_1 \equiv I_1$.

Step 2. Compute $v_i = v'_{i-1}A$ and construct the GU matrix

$$\begin{split} & G_{\left\{v'_{0},...,v'_{i-1},v_{i}\right\}}(B_{i+1}) \text{ where } B_{i+1} \equiv \begin{bmatrix} B'_{i} & 0\\ 0 & b \end{bmatrix}, \text{ such that } b \in \mathbb{C}_{i} \\ & \text{ are the entries of the last row of } B'_{i}. \text{ Use Gaussian elimination} \\ & \text{ to obtain } G_{\left\{v'_{0},...,v'_{i-1},v'_{i}\right\}}(B'_{i+1}). \end{split}$$

• If $v'_i \equiv 0$ stop and proceed to Step 3.

• If $v'_i \neq 0$, increment *i* by 1 and repeat Step 2.

Step 3. For i = k such that $v'_k \equiv 0$, the entries of the last row of B'_{k+1} , $b_{k+1,j} \in \mathbb{C}$ with j = 1, ..., k+1, are the coefficients of the minimal polynomial of the matrix $A \in M_n(\mathbb{C})$.

Benefit

Only need to use the first row of the matrix.

Example 5

Consider the lower Hessenberg matrix

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} \in M_3(\mathbb{R}).$$

Start with $v'_0 = [100]$.

Construct the GU matrix

$$G_{\{v'_0\}}(I_1) = \begin{bmatrix} 1 & 0 & 0 & | 1 \end{bmatrix}.$$

Compute
$$v_1 = v'_0 A = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$$
.

Construct the GU matrix

$$G_{\{v'_0,v_1\}}(I_2) = \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 \\ 1 & 1 & 0 & | & 0 & 1 \end{bmatrix}$$

Obtain the GU matrix by Gaussian elimination

$$G_{\{v'_0,v'_1\}}(B'_2) = \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 \\ 0 & 1 & 0 & | & -1 & 1 \end{bmatrix}.$$

Since $v'_1 \neq 0$, the algorithm continues.

Compute
$$v_2 = v'_1 A = \begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$$
.

Construct the GU matrix

$$G_{\{v'_0,v'_1,v_2\}}(B_3) = \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -1 & 1 & 0 \\ 2 & 1 & 1 & | & 0 & -1 & 1 \end{bmatrix}.$$

Obtain the GU matrix by Gaussian elimination

$$G_{\{v'_0,v'_1,v'_2\}}(B'_3) = \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -1 & 1 & 0 \\ 0 & 0 & 1 & | & -1 & -2 & 1 \end{bmatrix}.$$

Since $v'_2 \neq 0$, the algorithm continues.

Compute
$$v_3 = v'_2 A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$
.

Construct the GU matrix

$$G_{\{v'_0,v'_1,v'_2,v_3\}}(B_4) = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & -2 & 1 & 0 \\ 1 & 2 & 3 & 0 & -1 & -2 & 1 \end{bmatrix}.$$

Obtain the GU matrix by Gaussian elimination

$$G_{\{v'_0, v'_1, v'_2, v'_3\}}(B'_4) = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 4 & 3 & -5 & 1 \end{bmatrix}$$

Since $v'_3 \equiv 0$ the algorithm terminates.

The minimal polynomial of the matrix A is $q_A(t) = 4+3t-5t^2+t^3$.

THANK YOU