The MP Algorithm

Christopher Bailey
Department of Mathematical Sciences
Northern Illinois University

$$
\text { June 5, } 2013
$$

Outline

- The MP and MMP algorithm
- Unreduced lower Hessenberg matrices

The Minimal Polynomial

Given a matrix $A \in M_{n}(\mathbb{C})$, the minimal polynomial of A, denoted by $q_{A}(t)$, is defined to be the monic polynomial of minimal degree such that $q_{A}(A)=0$.

The MP algorithm

Our algorithm depends on the set $D=\left\{A^{0}, A, A^{2}, \ldots, A^{n}\right\}$ being linearly dependent.

The rvec operation
Let $A=\left[a_{i j}\right] \in M_{n}(\mathbb{C})$. Then a row vector, denoted by $\operatorname{rvec}(\mathbf{A})$, is defined by

$$
\operatorname{rvec}(A)=\left[a_{11}, \ldots, a_{1 n}: a_{21}, \ldots, a_{2 n}: \ldots: a_{n 1}, \ldots, a_{n n}\right] \in \mathbb{C}_{n^{2}}
$$

1. The map $f: M_{n}(\mathbb{C}) \rightarrow \mathbb{C}_{n^{2}}$ be defined by $f(A)=\operatorname{rvec}(A)$ is an isomorphism.
2. The set

$$
S=\left\{v_{0}=f(I), v_{1}=f(A), v_{2}=f\left(A^{2}\right), \ldots, v_{n}=f\left(A^{n}\right)\right\}
$$

is linearly dependent.
3. Why transform a matrix into a vector?

The $G U$ matrix

Let $\left\{v_{0}, \ldots, v_{k}\right\} \subseteq \mathbb{C}_{n^{2}}$ and $B_{k+1} \in M_{k+1}(\mathbb{C})$ be given. We define $G_{\left\{v_{0}, \ldots, v_{k}\right\}}\left(B_{k+1}\right) \in M_{k+1, n^{2}+k+1}(\mathbb{C})$ to be the matrix,

$$
G_{\left\{v_{0}, \ldots, v_{k}\right\}}\left(B_{k+1}\right) \equiv\left[\begin{array}{ccc}
v_{0} & \| & \\
v_{1} & \| & \\
: & \| & B_{k+1} \\
v_{k} & \| &
\end{array}\right] .
$$

The matrix $G_{\left\{v_{0}, \ldots, v_{k}\right\}}\left(B_{k+1}\right)$ will be called the Gaussian updating (GU) matrix.

How the GU matrix is used in the MP algorithm

1. Begin with $G_{\left\{v_{0}\right\}}\left(B_{1}\right)=\left[v_{0} \| 1\right]=\left[\begin{array}{llllll}e_{1}^{T} & e_{2}^{T} & \cdots & e_{n}^{T} & \| & 1\end{array}\right]$ where $B_{1}=I_{1}$
2. Next, construct $G_{\left\{v_{0}, v_{1}\right\}}\left(B_{2}\right)$ where $B_{2}=\left[\begin{array}{cc}B_{1} & 0 \\ 0 & 1\end{array}\right] \in M_{2}(\mathbb{C})$.
3. Gaussian row operations are performed to determine whether or not v_{0} and v_{1} are linearly dependent.
4. Out of this we have a new GU matrix, $G_{\left\{v_{0}, v_{1}^{\prime}\right\}}\left(B_{2}^{\prime}\right)$, where v_{1}^{\prime} is the vector obtained from v_{1} in the Gaussian elimina-
tion, and B_{2}^{\prime} is the matrix obtained from B_{2} by the Gaussian elimination.
5. Successively, we construct the GU matrix $G_{\left\{v_{0}, v_{1}^{\prime}, \ldots, v_{k-1}^{\prime}, v_{k}\right\}}\left(B_{k+1}\right)$, where $B_{k+1}=\left[\begin{array}{cc}B_{k}^{\prime} & 0 \\ 0 & e_{k}^{T}\end{array}\right]$.
6. Gaussian elimination is used to determine whether or not the newly introduced vector, v_{k}, is linearly dependent to the vectors in the set $\left\{v_{0}, v_{1}^{\prime}, \ldots, v_{k-1}^{\prime}\right\}$.
7. From this we obtain a new GU matrix, $G_{\left\{v_{0}, v_{1}^{\prime}, \ldots, v_{k-1}^{\prime}, v_{k}^{\prime}\right\}}\left(B_{k+1}^{\prime}\right)$, where v_{k}^{\prime} is the vector obtained from v_{k} in the Gaussian elim-
ination, and B_{k+1}^{\prime} is the matrix obtained from B_{k+1} in the Gaussian elimination.
8. This process must produce a zero vector, v_{k}^{\prime}, for some $k \leq n$

The matrix B_{k+1} in the GU matrix

1. Start with $B_{1}=I_{1}$
2. $B_{2}=\left[\begin{array}{cc}B_{1} & 0 \\ 0 & e_{1}^{T}\end{array}\right]$
3. Construct the GU matrix $G_{\left\{v_{0}, v_{1}\right\}}\left(B_{2}\right)$
4. Use Gaussian elimination to obtain the GU matrix $G_{\left\{v_{0}, v_{1}^{\prime}\right\}}\left(B_{2}^{\prime}\right)$
5. The first column of B_{2}^{\prime} is the coefficient of I_{n} in the linear combination of v_{1}^{\prime} and the second column of B_{2}^{\prime} is the coefficient of A in the linear combination of v_{1}^{\prime}.
6. When $G_{\left\{v_{0}, v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right\}}\left(B_{k+1}^{\prime}\right)$ is obtained from $G_{\left\{v_{0}, v_{1}^{\prime} \ldots, v_{k-1}^{\prime}, v_{k}\right\}}\left(B_{k+1}\right)$ using Gaussian elimination.
(a) Then the first column of B_{k+1}^{\prime} is the coefficient of I_{n} in the linear combination of v_{k}^{\prime};
(b) The second column of the matrix B_{k+1}^{\prime} is the coefficient of A in the linear combination of v_{k}^{\prime};
(c) In general the k-th column of the matrix B_{k+1}^{\prime} is the coefficient of A^{k} in the linear combination of v_{k}^{\prime}.
7. The coefficients of the minimal polynomial are given in the last row of B_{k+1}^{\prime}.

The Minimal Polynomial Algorithm (MP)

For a given $A \in M_{n}(\mathbb{C})$, let $v_{i}=\operatorname{rvec}\left(A^{i}\right)$, and do the following.
Step 1. (Initialization). Create $G_{\left\{v_{0}\right\}}\left(I_{1}\right)$, set $v_{0} \equiv v_{0}^{\prime}, i=1$, and

$$
B_{1} \equiv I_{1} .
$$

Step 2. Compute v_{i} and construct $G_{\left\{v_{0}^{\prime}, \ldots, v_{i-1}^{\prime}, v_{i}\right\}}\left(B_{i+1}\right)$ where

$$
\begin{aligned}
& B_{i+1} \equiv\left[\begin{array}{cc}
B_{i}^{\prime} & 0 \\
0 & e_{i}^{T}
\end{array}\right] . \text { Use Gaussian elimination to obtain } \\
& G_{\left\{v_{0}^{\prime}, \ldots, v_{i-1}^{\prime}, v_{i}^{\prime}\right\}}\left(B_{i+1}^{\prime}\right) .
\end{aligned}
$$

- If $v_{i}^{\prime} \equiv 0$ stop and proceed to Step 3.
- If $v_{i}^{\prime} \neq 0$, increment i by 1 and repeat Step 2.

Step 3. For $i=k$ such that $v_{k}^{\prime} \equiv 0$, the entries of the last row of $B_{k+1}^{\prime}, b_{k+1, j} \in \mathbb{C}$ with $j=1, \ldots, k+1$, are the coefficients of the minimal polynomial of the matrix $A \in M_{n}(\mathbb{C})$.

Example 1 We use the MP algorithm to compute the minimal polynomial of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 2 & 1 \\
2 & 0 & 1
\end{array}\right] \in M_{3}(\mathbb{R})
$$

1. Compute $v_{0}=v_{0}^{\prime}=\operatorname{rvec}\left(I_{3}\right)=\left[\begin{array}{lllllllllll}1 & 0 & 0 & : & 0 & 1 & 0 & : & 0 & 0 & 1\end{array}\right]$
2. Construct

$$
G_{\left\{v_{0}^{\prime}\right\}}\left(I_{1}\right)=\left[\begin{array}{llllllllllll|l}
1 & 0 & 0 & : & 0 & 1 & 0 & : & 0 & 0 & 1 & \| & 1
\end{array}\right] .
$$

Compute $v_{1}=\operatorname{rvec}(A)=\left[\begin{array}{lllllllllll}1 & 1 & 0 & : & -1 & 2 & 1 & : & 2 & 0 & 1\end{array}\right]$

Construct

$$
G_{\left\{v_{0}^{\prime}, v_{1}\right\}}\left(I_{2}\right)=\left[\begin{array}{cccccccccccccc}
1 & 0 & 0 & : & 0 & 1 & 0 & : & 0 & 0 & 1 & \| & 1 & 0 \\
1 & 1 & 0 & : & -1 & 2 & 1 & : & 2 & 0 & 1 & \| & 0 & 1
\end{array}\right] .
$$

Obtain the GU matrix by Gaussian elimination

$$
G_{\left\{v_{0}^{\prime}, v_{1}^{\prime}\right\}}\left(B_{2}^{\prime}\right)=\left[\begin{array}{cccccccccccc|cc}
1 & 0 & 0 & : & 0 & 1 & 0 & : & 0 & 0 & 1 & \| & 1 & 0 \\
0 & 1 & 0 & : & -1 & 1 & 1 & : & 2 & 0 & 0 & \| & -1 & 1
\end{array}\right] .
$$

Since $v_{1}^{\prime} \neq 0$, the alorithm continues

Compute

$$
v_{2}=\operatorname{rvec}\left(A^{2}\right)=\left[\begin{array}{lllllllllll}
0 & 3 & 1 & : & -1 & 3 & 3 & : & 4 & 2 & 1
\end{array}\right]
$$

Consruct the GU matrix

$$
G_{\left\{v_{0}^{\prime}, v_{1}^{\prime}, v_{2}\right\}}\left(B_{3}\right)=\left[\begin{array}{ccccccccccccccc}
1 & 0 & 0 & : & 0 & 1 & 0 & : & 0 & 0 & 1 & \| & 1 & 0 & 0 \\
0 & 1 & 0 & : & -1 & 1 & 1 & : & 2 & 0 & 0 & \| & -1 & 1 & 0 \\
0 & 3 & 1 & : & -1 & 3 & 3 & : & 4 & 2 & 1 & \| & 0 & 0 & 1
\end{array}\right] .
$$

Obtain the GU matrix by Gaussian elimination
$G_{\left\{v_{0}^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}\right\}}\left(B_{3}^{\prime}\right)=\left[\begin{array}{ccccccccccccccc}1 & 0 & 0 & : & 0 & 1 & 0 & : & 0 & 0 & 1 & \| & 1 & 0 & 0 \\ 0 & 1 & 0 & : & -1 & 1 & 1 & : & 2 & 0 & 0 & \| & -1 & 1 & 0 \\ 0 & 0 & 1 & : & 2 & 0 & 0 & : & -2 & 2 & 1 & \| & 3 & -3 & 1\end{array}\right]$.

Since $v_{2}^{\prime} \neq 0$, the algorithm continues.

Compute

$$
v_{3}=\operatorname{rvec}\left(A^{3}\right)=\left[\begin{array}{lllllllllll}
-1 & 6 & 4 & : & 2 & 5 & 6 & : & 4 & 8 & 3
\end{array}\right]
$$

Construct the GU matrix $G_{\left\{v_{0}^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}, v_{3}\right\}}\left(B_{4}\right)=$

$$
\left[\begin{array}{cccccccccccccccc}
1 & 0 & 0 & : & 0 & 1 & 0 & : & 0 & 0 & 1 & \| & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & : & -1 & 1 & 1 & : & 2 & 0 & 0 & \| & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & : & 2 & 0 & 0 & : & -2 & 2 & 1 & \| & 3 & -3 & 1 & 0 \\
-1 & 6 & 4 & : & 2 & 5 & 6 & : & 4 & 8 & 3 & \| & 0 & 0 & 0 & 1
\end{array}\right]
$$

The new GU matrix is $G_{\left\{v_{0}^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right\}}\left(B_{4}^{\prime}\right)=$

$$
\left[\begin{array}{cccccccccccccccc}
1 & 0 & 0 & : & 0 & 1 & 0 & : & 0 & 0 & 1 & \| & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & : & -1 & 1 & 1 & : & 2 & 0 & 0 & \| & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & : & 2 & 0 & 0 & : & -2 & 2 & 1 & \| & 3 & -3 & 1 & 0 \\
0 & 0 & 0 & : & 0 & 0 & 0 & : & 0 & 0 & 0 & \| & -5 & 6 & -4 & 1
\end{array}\right] .
$$

Since $v_{3}^{\prime} \equiv 0$, the algorithm terminates.

The coefficients of the minimal polynomial can be read off from
the last row of the matrix

$$
B_{4}^{\prime}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
3 & -3 & 1 & 0 \\
-5 & 6 & -4 & 1
\end{array}\right]
$$

The minimal polynomial of A is $q_{A}(t)=-5+6 t-4 t^{2}+t^{3}$

The MMP algorithm

The Modified Minimal Polynomial Algorithm (MMP)

For a given $A \in M_{n}(\mathbb{C})$, do the following.
Step 1. Create $G_{\left\{v_{0}\right\}}\left(I_{1}\right)$, set $v_{0}=\operatorname{rvec}\left(I_{n}\right) \equiv v_{0}^{\prime}$, set $i=1$, and $B_{1} \equiv I_{1}$
Step 2. Compute $v_{i}=v_{i-1}^{\prime}(I \otimes A)$ and construct the GU matrix
$G_{\left\{v_{0}^{\prime}, \ldots, v_{i-1}^{\prime}, v_{i}\right\}}\left(B_{i+1}\right)$ where $B_{i+1} \equiv\left[\begin{array}{cc}B_{i}^{\prime} & 0 \\ 0 & b\end{array}\right]$, such that $b \in \mathbb{C}_{i}$ are the entries of the last row of B_{i}^{\prime}. Use Gaussian elimination to obtain $G_{\left\{v_{0}^{\prime}, \ldots, v_{i-1}^{\prime}, v_{i}^{\prime}\right\}}\left(B_{i+1}^{\prime}\right)$.

- If $v_{i}^{\prime} \equiv 0$ stop and proceed to Step 3.
- If $v_{i}^{\prime} \neq 0$, increment i by 1 and repeat Step 2 .

Step 3. For $i=k$ such that $v_{k}^{\prime} \equiv 0$, the entries of the last row of $B_{k+1}^{\prime}, b_{k+1, j} \in \mathbb{C}$ for $j=1, \ldots, k+1$, are the coefficients of the minimal polynomial of the matrix $A \in M_{n}(\mathbb{C})$.

The benefits

1. v_{k} is obtained from v_{k-1}^{\prime} by $v_{i}=v_{i-1}^{\prime}(I \otimes A)$
2. Obtaining B_{k+1}

The matrix B_{k+1}
Suppose we have computed the following GU matrix

$$
G_{\left\{v_{0}^{\prime}, \ldots, v_{k-1}^{\prime}\right\}}\left(B_{k}^{\prime}\right)=\left[\begin{array}{cccc}
v_{0}^{\prime} & \| & & \\
v_{1}^{\prime} & \| & B_{k-1}^{\prime} & \\
\vdots & \| & & \\
v_{k-1}^{\prime} & \| b_{1} & \ldots & b_{k}
\end{array}\right]
$$

The $(k+1)$-th row of the matrix B_{k+1} may be obtained by shifting the entries to the right 1 entry.

$$
G_{\left\{v_{0}^{\prime}, \ldots, v_{k-1}^{\prime}, v_{k}\right\}}\left(B_{k+1}\right)=\left[\begin{array}{ccccc}
v_{0}^{\prime} & \| & & & \\
v_{1}^{\prime} & \| & B_{k-1}^{\prime} & & \\
\vdots & \| & & & \\
v_{k-1}^{\prime} & \| b_{1} & \ldots & b_{k} & 0 \\
v_{k} & \| 0 & b_{1} & \ldots & b_{k}
\end{array}\right] .
$$

Example 2

We use the MMP algorithm to compute the minimal polynomial of the matrix

$$
A=\left[\begin{array}{cccc}
3 & -1 & -1 & 0 \\
1 & 1 & -1 & 0 \\
1 & -1 & 1 & 0 \\
1 & -1 & 0 & 1
\end{array}\right] \in M_{4}(\mathbb{C})
$$

Compute

$$
v_{0}^{\prime}=\left[\begin{array}{lllllllllllll:lll}
1 & 0 & 0 & 0 & : 0 & 1 & 0 & 0 & : & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array} 0 \quad 1\right]
$$

Construct

$$
G_{\left\{v_{0}^{\prime}\right\}}\left(I_{1}\right)=\left[\begin{array}{llll:lll:lllllll}
1 & 0 & 0 & 0: 1 & 0 & 0 & 0: 0 & 0 & 1 & 0: 0 & 0 & 0 & 1 \|
\end{array}\right]
$$

Compute

$$
\begin{aligned}
& v_{1}=v_{0}^{\prime}(I \otimes A) \\
& =\left[\begin{array}{lllllllllllllllll}
3 & -1 & -1 & 0 & : 1 & 1 & -1 & 0 & : & 1 & -1 & 1 & 0 & : 1 & -1 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Construct

$$
G_{\left\{v_{0}^{\prime}, v_{1}\right\}}\left(I_{2}\right)=\left[\left.\begin{array}{cccc:cccc:cccc:cccc||cc}
1 & 0 & 0 & 0 & : & 1 & 1 & 0 & 0 & : & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
3 & -1 & -1 & 0 & : & 1 & 1 & -1 & 0 & : & 1 & -1 & 1 & 0 & : & 1 & -1 & 0
\end{array} \right\rvert\,\right.
$$

Obtain the GU matrix by Gaussian elimination
$G_{\left\{v_{0}^{\prime}, v_{1}^{\prime}\right\}}\left(B_{2}^{\prime}\right)=\left[\begin{array}{cccc:ccc:cccc:cccc|cc}1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & \| \\ 0 & -1 & -1 & 0 & : & 1 & -2 & -1 & 0 & : & 1 & -1 & -2 & 0 & : & 1 & -1\end{array} 0\right.$

Since $v_{1}^{\prime} \neq 0$, we continue the algorithm

Compute

$$
\begin{aligned}
& v_{2}=v_{1}^{\prime}(I \otimes A) \\
& =\left[\begin{array}{llll}
-2 e_{1}^{T} & -2 e_{2}^{T} & -2 e_{3}^{T} & -2 e_{4}^{T}
\end{array}\right]
\end{aligned}
$$

Construct $G_{\left\{v_{0}^{\prime}, v_{1}^{\prime}, v_{2}\right\}}\left(B_{3}\right)=$

$$
\left[\begin{array}{ccccccccccccc:cccc|ccc}
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & : & 0 & 0 & 1 & 0 & : & 0 & 0 & 0 & 1 & \| & 1 \\
0 & 0 & 0 \\
0 & -1 & -1 & 0 & 1 & -2 & -1 & 0 & 1 & -1 & -2 & 0 & 1 & -1 & 0 & -2 & \| & -3 & 1 & 0 \\
-2 & 0 & 0 & 0 & : & 0 & -2 & 0 & 0 & : & 0 & 0 & -2 & 0 & : & 0 & 0 & 0 & -2 & \| \\
0 & -3 & 1
\end{array}\right]
$$

Obtain the GU matrix by Gaussian elimination $G_{\left\{v_{0}^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}\right\}}\left(B_{3}^{\prime}\right)=$

Since $v_{2}^{\prime} \equiv 0$ the MMP algorithm terminates.

The minimal polynomial is $q_{A}(t)=2-3 t+t^{2}$.

The MMP Algorithm for Unreduced Lower Hessenberg Matrices

For an unreduced lower Hessenberg matrix $A \in M_{n}(\mathbb{C})$, let v_{i} be the first row of the matrix $A^{(i)}, A^{(0)}=I_{n}$, and do the following.

Step 1. Create $G_{\left\{v_{0}\right\}}\left(I_{1}\right)$, set $v_{0}=e_{1}^{T} \equiv v_{0}^{\prime}$, where $e_{1}^{T} \in \mathbb{C}_{n}$, set $i=1$, and $B_{1} \equiv I_{1}$.
Step 2. Compute $v_{i}=v_{i-1}^{\prime} A$ and construct the GU matrix
$G_{\left\{v_{0}^{\prime}, \ldots, v_{i-1}^{\prime}, v_{i}\right\}}\left(B_{i+1}\right)$ where $B_{i+1} \equiv\left[\begin{array}{cc}B_{i}^{\prime} & 0 \\ 0 & b\end{array}\right]$, such that $b \in \mathbb{C}_{i}$
are the entries of the last row of B_{i}^{\prime}. Use Gaussian elimination to obtain $G_{\left\{v_{0}^{\prime}, \ldots, v_{i-1}^{\prime}, v_{i}^{\prime}\right\}}\left(B_{i+1}^{\prime}\right)$.

- If $v_{i}^{\prime} \equiv 0$ stop and proceed to Step 3.
- If $v_{i}^{\prime} \neq 0$, increment i by 1 and repeat Step 2.

Step 3. For $i=k$ such that $v_{k}^{\prime} \equiv 0$, the entries of the last row of $B_{k+1}^{\prime}, b_{k+1, j} \in \mathbb{C}$ with $j=1, \ldots, k+1$, are the coefficients of the minimal polynomial of the matrix $A \in M_{n}(\mathbb{C})$.

Benefit

Only need to use the first row of the matrix.

Example 5

Consider the lower Hessenberg matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
2 & 1 & 1 \\
1 & 2 & 3
\end{array}\right] \in M_{3}(\mathbb{R})
$$

Start with $v_{0}^{\prime}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$.

Construct the GU matrix

$$
G_{\left\{v_{0}^{\prime}\right\}}\left(I_{1}\right)=\left[\begin{array}{lll}
1 & 0 & 0 \mid 1
\end{array}\right] .
$$

Compute $v_{1}=v_{0}^{\prime} A=\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$.

Construct the GU matrix

$$
G_{\left\{v_{0}^{\prime}, v_{1}\right\}}\left(I_{2}\right)=\left[\begin{array}{lll|ll}
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1
\end{array}\right] .
$$

Obtain the GU matrix by Gaussian elimination

$$
G_{\left\{v_{0}^{\prime}, v_{1}^{\prime}\right\}}\left(B_{2}^{\prime}\right)=\left[\begin{array}{lll|cc}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 & 1
\end{array}\right] .
$$

Since $v_{1}^{\prime} \neq 0$, the algorithm continues.

Compute $v_{2}=v_{1}^{\prime} A=\left[\begin{array}{lll}2 & 1 & 1\end{array}\right]$.

Construct the GU matrix

$$
G_{\left\{v_{0}^{\prime}, v_{1}^{\prime}, v_{2}\right\}}\left(B_{3}\right)=\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
2 & 1 & 1 & 0 & -1 & 1
\end{array}\right] .
$$

Obtain the GU matrix by Gaussian elimination

$$
G_{\left\{v_{0}^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}\right\}}\left(B_{3}^{\prime}\right)=\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & -1 & -2 & 1
\end{array}\right] .
$$

Since $v_{2}^{\prime} \neq 0$, the algorithm continues.

Compute $v_{3}=v_{2}^{\prime} A=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$.

Construct the GU matrix

$$
G_{\left\{v_{0}^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}, v_{3}\right\}}\left(B_{4}\right)=\left[\begin{array}{ccc|cccc}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & -2 & 1 & 0 \\
1 & 2 & 3 & 0 & -1 & -2 & 1
\end{array}\right] .
$$

Obtain the GU matrix by Gaussian elimination

$$
G_{\left\{v_{0}^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right\}}\left(B_{4}^{\prime}\right)=\left[\begin{array}{ccc|cccc}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & -2 & 1 & 0 \\
0 & 0 & 0 & 4 & 3 & -5 & 1
\end{array}\right] .
$$

Since $v_{3}^{\prime} \equiv 0$ the algorithm terminates.

The minimal polynomial of the matrix A is $q_{A}(t)=4+3 t-5 t^{2}+t^{3}$.

THANK YOU

